
SNAPPY Pipeline Documentation
Release master

Manuel Holtgrewe

Sep 20, 2023

PIPELINE USERS DOCS

1 Quickstart 3
1.1 Install (Mini)conda . 3
1.2 Install Snappy Pipeline . 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Installing a Release . 5
2.3 Installing as a Developer . 5

3 Usage 7

4 Overview 9
4.1 Motivation . 9
4.2 Definitions . 10
4.3 An Example Project . 10

5 Pipeline Step Introduction 19

6 Generic Pipeline Step Description 21
6.1 File System Layout . 21
6.2 Step Instance Configuration config.yaml . 22

7 Adapter Trimming 23
7.1 Step Input . 23
7.2 Step Output . 24
7.3 Default Configuration . 25
7.4 Available Adapter Trimming Tools . 31

8 Germline Build Target Sequence gCNV Model 33
8.1 Step Input . 33
8.2 Step Output . 33
8.3 Global Configuration . 34
8.4 Default Configuration . 34

9 Germline Build WGS gCNV Model 35
9.1 Step Input . 35
9.2 Step Output . 35
9.3 Global Configuration . 36
9.4 Default Configuration . 36

10 HLA Typing 37

i

10.1 Step Input . 37
10.2 Step Output . 37
10.3 Default Configuration . 37
10.4 Available HLA Typing Tools . 38

11 IGV Session Generation 39
11.1 Step Input . 39
11.2 Step Output . 39
11.3 Global Configuration . 39
11.4 Default Configuration . 39
11.5 Reports . 40

12 NGS Data QC 41
12.1 Default Configuration . 41

13 NGS Mapping 43
13.1 Properties . 43
13.2 Step Input . 43
13.3 Step Output . 45
13.4 Global Configuration . 45
13.5 Default Configuration . 45
13.6 Available Read Mappers . 47
13.7 Notes on STAR mapper configuration . 48
13.8 Reports . 48

14 NGS Sanity Checking 51
14.1 Step Input . 51
14.2 Step Output . 51
14.3 Default Configuration . 51

15 Somatic Gene Fusion Calling 53
15.1 Step Input . 53
15.2 Step Output . 53
15.3 Default Configuration . 53
15.4 Available Gene Fusion Callers . 54

16 Somatic Neoepitope Prediction 55
16.1 Step Input . 55
16.2 Step Output . 55
16.3 Default Configuration . 55

17 Somatic NGS Sanity Checking 57
17.1 Step Input . 57
17.2 Step Output . 57
17.3 Default Configuration . 57

18 Somatic Purity & Ploidy Estimate 59
18.1 Default Configuration . 59

19 Somatic Targeted Seq. CNV Calling 61
19.1 Step Input . 61
19.2 Step Output . 61
19.3 Default Configuration . 62
19.4 Available Somatic Targeted CNV Caller . 64

ii

20 Somatic Variant Annotation 65
20.1 Step Input . 65
20.2 Step Input . 65
20.3 Step Output . 65
20.4 Global Configuration . 66
20.5 Default Configuration . 66
20.6 Reports . 67

21 Somatic Variant Calling 69
21.1 Step Input . 69
21.2 Step Output . 69
21.3 Global Configuration . 70
21.4 Default Configuration . 70
21.5 Available Somatic Variant Callers . 73
21.6 Reports . 73

22 Somatic Variant Checking 75
22.1 Step Input . 75
22.2 Step Output . 75
22.3 Global Configuration . 75
22.4 Default Configuration . 75
22.5 Reports . 76

23 Somatic Variant Expression 77
23.1 Step Input . 77
23.2 Step Output . 77
23.3 Default Configuration . 77

24 Somatic Variant Filtration 79
24.1 Default Configuration . 79
24.2 Important . 80
24.3 Concept . 80
24.4 Workflow . 80

25 Somatic WGS CNV Calling 81
25.1 Step Input . 81
25.2 Step Output . 81
25.3 Global Configuration . 82
25.4 Default Configuration . 82
25.5 Available Somatic CNV Callers . 82
25.6 Reports . 82

26 Somatic WGS SV Calling 83
26.1 Step Input . 83
26.2 Step Output . 83
26.3 Global Configuration . 84
26.4 Default Configuration . 84
26.5 Available Somatic CNV Callers . 84
26.6 Reports . 84

27 Germline Targeted Seq. CNV Calling 85

28 Germline Targeted Seq. MEI Calling 87
28.1 Stability . 87
28.2 Step Input . 87

iii

28.3 Step Output . 87
28.4 Global Configuration . 88
28.5 Default Configuration . 88
28.6 Available MEI Identification Tools . 88
28.7 Reports . 88
28.8 Parallel Execution . 88

29 Germline Repeat Expansion Analysis 89
29.1 Stability . 89
29.2 Step Input . 89
29.3 Step Output . 89
29.4 Global Configuration . 90
29.5 Default Configuration . 90
29.6 Available Repeat Analysis Tools . 90
29.7 Parallel Execution . 90

30 T cell CRG Report 91
30.1 Step Input . 91
30.2 Step Output . 91
30.3 Default Configuration . 91
30.4 Available Gene Fusion Callers . 92

31 Germline Variant Annotation 93
31.1 Stability . 93
31.2 Step Input . 93
31.3 Step Output . 93
31.4 Global Configuration . 93
31.5 Default Configuration . 93
31.6 Available Variant Annotators . 94
31.7 Reports . 94

32 Germline Variant Calling 95
32.1 Properties . 95
32.2 Step Input . 95
32.3 Step Output . 95
32.4 Global Configuration . 96
32.5 Default Configuration . 96
32.6 Variant Callers . 97
32.7 Reports . 98
32.8 Log Files . 98
32.9 Implementation Notes . 99
32.10 Example Output . 99

33 Germline Variant Sanity Checking 101
33.1 Step Input . 101
33.2 Step Output . 101
33.3 Global Configuration . 101
33.4 Default Configuration . 101
33.5 Available Variant Checkers . 102
33.6 Reports . 102

34 Germline Variant De Novo Filtration 103
34.1 Step Input . 103
34.2 Step Output . 103
34.3 Global Configuration . 104

iv

34.4 Default Configuration . 104
34.5 Reports . 105

35 Germline Variant Phasing 107
35.1 Step Input . 107
35.2 Step Output . 107
35.3 Global Configuration . 108
35.4 Default Configuration . 108
35.5 Reports . 109

36 Germline Variant Filtration 111
36.1 Filtration Steps . 112
36.2 Step Input . 112
36.3 Step Output . 112
36.4 Global Configuration . 112
36.5 Default Configuration . 112
36.6 Reports . 114

37 Germline SV Calling 115

38 Germline WGS SV Filtration 117

39 Developer’s Introduction 119
39.1 Prerequisites – Your Tool Belt . 120
39.2 Anatomy of a Typical Pipeline Step . 121
39.3 Anatomy of the cubi-snake Executable . 121

40 Somatic Variant Calling Dissection 123
40.1 Pipeline Step File Structure . 123
40.2 The Snakefile . 124
40.3 The Module . 126

41 NGS Mapping Dissection 135

42 API Documentation 137
42.1 snappy_pipeline.base . 137
42.2 snappy_pipeline.find_file . 138
42.3 snappy_pipeline.utils . 139
42.4 snappy_pipeline.workflows.abstract . 140

43 Contributing 149
43.1 Types of Contributions . 149
43.2 Get Started! . 150
43.3 Pull Request Guidelines . 151
43.4 Tips . 151

44 How To: Release 153

45 Credits 155
45.1 Active Contributors . 155
45.2 Former Contributors . 155

46 Changelog 157

47 License 159

v

Python Module Index 161

Index 163

vi

SNAPPY Pipeline Documentation, Release master

This is the documentatation for the CUBI Pipeline. This documentation is split into four parts:

Pipeline User Docs Documentation for pipeline users. Start here to learn about the pipeline. This section starts at
Quickstart.

Pipeline Step Docs Documentation for the individual pipeline steps. This includes a general description, description
of the related configuration settings, and a documentation of generated output files and input workflow steps.
This section starts at Pipeline Step Introduction.

Pipeline Developers Docs Documentation for pipeline developers. After you are proficient in using the pipeline,
continue reading here if you want to fix, change, or extend the pipeline. This section starts at Developer’s Intro-
duction.

API Documentation This is the entry point for the API.

Project Info House-keeping information about the project, such as instructions for developer setup, author list,
changelog etc. Start at How To: Release).

Note: Where to Start?

Even if you want to modify the pipeline, it’s best to read the user documentation first (BIH users start a Quickstart,
other users refer to Installation) as you need to be able to run the pipeline to test your changes and additions.

PIPELINE USERS DOCS 1

SNAPPY Pipeline Documentation, Release master

2 PIPELINE USERS DOCS

CHAPTER

ONE

QUICKSTART

This chapter gives the minimal number of commands required for setting up the pipeline on the BIH cluster.

Note: This describes the setup as a pipeline user. If you want to know about the setup as a pipeline developer, see
Installation.

1.1 Install (Mini)conda

First, install miniconda, e.g., into $HOME/miniconda3.

$ wget -O /tmp/Miniconda3-latest-Linux-x86_64.sh \
https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

$ bash /tmp/Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3

Note: What is conda/miniconda?

Conda is a Python-based package manager that can also package binary files (such as Bioinformatics software). Mini-
conda is a minimal Conda installation.

If anything goes wrong with your Miniconda installation, you can always just remove $HOME/miniconda3 and start
anew.

Now, make sure it is available in your PATH environment variable.

$ export PATH=$HOME/miniconda3/bin:$PATH

1.2 Install Snappy Pipeline

The recommended way of installing the CUBI pipeline is via pip.

Replace the X.Y.Z in the definition of VERSION below with the version you find in the README.rst file of the project
on the CUBI GitHub.

$ VERSION=vX.Y.Z
$ pip install git+ssh://git@github.com:bihealth/snappy-pipeline.git@v${VERSION}
→˓#egg=snappy_pipeline

Or see README.rst for a more detailed installation guide and the environment setup step.

3

SNAPPY Pipeline Documentation, Release master

4 Chapter 1. Quickstart

CHAPTER

TWO

INSTALLATION

Note: If you are on the BIH cluster, first read Quickstart as this also explains the temporary directory.

2.1 Prerequisites

The CUBI pipeline requires Python >=3.7 (e.g., from a Miniconda3 installation).

More recent versions also work but other requirements as Snakemake might make it depend on a more recent Python
version.

For cluster execution, you need a Snakemake profile available.

2.2 Installing a Release

This is the recommended way if you just want to use the pipeline, simply read Quickstart.

2.3 Installing as a Developer

It is highly recommended to have a Miniconda installation for the development as this allows for easily resetting every-
thing. You can of course clone the code anywhere you like.

$ mkdir -p ~/Development/pipeline_dev
$ cd ~/Development/pipeline_dev
$ git clone git@github.com:bihealth/snappy-pipeline.git
$ cd snappy_pipeline
$ pip install -e .
$ pip install -r requirements/dev.txt

It’s also a good idea to install some packages required for testing through conda:

$ conda env update --name root --file environment.yaml

(If you do not do this, please make sure that you have git-lfs in your PATH through other means)

5

SNAPPY Pipeline Documentation, Release master

2.3.1 Running the Tests

To run the tests, you need to add the packages in requirements/test.txt.

$ cd ~/Development/pipeline_dev
$ py.test

2.3.2 Running the Style Checks

$ cd ~/Development/pipeline_dev
$ flake8

2.3.3 Developer Documentation

Make sure to also read the “Pipeline Developer Docs” section, starting with Developer’s Introduction.

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

As a user, you will mostly interface with the CUBI pipeline system using the snappy-snake program.

This program is a wrapper around Snakemake and provides the following features:

• a number of pre-packaged, well-tested workflows (pipeline steps) that are

• driven by configuration and sample sheet files and

• can be shared over multiple projects; and a

• easy-to-use command line interface.

Here is how to get command line help:

$ snappy-snake --help

7

https://snakemake.bitbucket.org

SNAPPY Pipeline Documentation, Release master

8 Chapter 3. Usage

CHAPTER

FOUR

OVERVIEW

This chapter gives you the big picture of the CUBI pipeline system. The audience is people who already have experi-
ence with Bioinformatics pipeline/workflow systems and see the benefit of such systems (e.g., GNU Make, Snakemake,
bpipe, etc.) over shell files over interactive bash commands. You are part of the audience if you agree that automa-
tion is key for effective, efficient, and reproducible Bioinformatics analysis as this is a requirement for important key
requirements such as provenance tracking.

Up to a certain point, automation in Bioinformatics workflows is a no-brainer as the same steps always repeat them-
selves. After this point, the tasks might become very project specific and not benefit from generic, shared automation
much. One example is report generation where most of the code cannot be re-used in different projects. Here, different
means should be used (e.g., using Rmarkdown documents).

The CUBI pipeline system is aimed at the steps upstream of this “certain point”.

4.1 Motivation

Generally, the aim was to achieve the following properties in a pipeline system:

Re-use. Ability to re-use common Bioinformatics analysis steps. Mostly, these are shell snippets with calls to standard
Bioinformatics tools with some glue and conversion code thrown in.

Configurability. Allow for good configuration by configuration files. No paths should be hard-coded in the system
but instead come from a configuration file. Further, the important parameters that might need tweaking should
be exposed through the configuration.

Sensible Default Parameters. Provide sensible defaults for configuration. Ideally, use auto-tuning of parameters (e.g.,
call BWA-ALN for short and single reads, BWA-MEM for long, paired reads).

Good Documentation. Provide good documentation of the pipeline system. Widespread re-use improves the pay-off
of good documentation.

Logging software versions. Log the version of the pipeline and tools to allow analyses to be repeated with the same
program versions in the future. At the very least, knowing the versions used can help explain (slight) differences
in results.

Versioning of pipeline code. Use semantic versioning for result files. Output paths should not change or disappear
between minor versions.

Robustness. Pipeline execution failure should be prevented (e.g., all required parameters to called tools should be
present) and technical weaknesses should be worked around (e.g., by allowing restarting of jobs).

Restartability. If the pipeline is stopped or when new input data sets are added, do not repeat unnecessary work.
Further, if an intermediate file changes, the dependent files should be updated. (This is similar to what GNU
Make does.)

9

SNAPPY Pipeline Documentation, Release master

Ease of use. Help the users not shoot themselves in the foot too badly (e.g., prevent accidentally overwriting already
existing files). Easy local and cluster execution. At least provide sensible defaults for resource requirements,
ideally auto-configured from input data.

4.2 Definitions

For clarity, this documentation uses the following definitions for separating the code for pipeline steps and the actual
execution of code.

pipeline Code for performing a set of Bioinformatics tasks in an automated fashion.

project A project corresponds to a directory in the file system. A project is an instance of a pipeline, in that the
different available pipeline parts are plugged together by configuration and the executed.

(pipeline) step Program code (Snakefiles, scripts etc.) for performing a certain “encapsulated” set of tasks. Examples
are read mapping, variant calling, and variant annotation.

(pipeline) step instance A project’s folder on the file system, with configuration, where a pipeline step is executed.
The instance shares the pipeline step code with all other intances of the same type.

working directory A directory on the disk for a step instance.

4.3 An Example Project

The above part of this chapter is quite abstract. Let us draw some pictures and go from the abstract description to a
concrete example. We will use a simple NGS somatic variant calling pipeline for matched tumor/normal pairs, setup
for WES or WGS processing.

4.3.1 Components of a CUBI Pipeline Project

The following figure shows the different components that are involved for running the CUBI pipeline.

project
config.yaml

working dir.
config.yaml

working dir.
config.yaml

working dir.
config.yaml

e
x
te

n
d

s

project
directory

ngs_mapping
working directory

somatic_variant_calling
working directory

somatic_variant_annotation
working directory

co
n
ta

in
s

cubi_pipeline
Python package

ngs_mapping
workflow code

somatic_variant_calling
workflow code

somatic_variant_annotation
workflow code

co
n
ta

in
s

raw data files static data files
bio medical

sample sheets

Fig. 1: Overview of the different components for running the CUBI pipeline. Boxes of the same color indicate that the
represented entities belong together.

The different parts are as follows

10 Chapter 4. Overview

SNAPPY Pipeline Documentation, Release master

• The blue-colored boxes represent the snappy_pipeline Python package that contains the snappy-snake ex-
ecutable and the code for the different pipeline steps.

• The yellow-colored boxes represent the project directory with the different sub directories for the step instances.
For each step that is to be executed (with a given configuration set), a directory is created. In the given example,
there is only one directory (and thus instance) for each step.

• The orange-colored boxes represent the configuration. There is a project-wide config.yaml file that defines
project-wide defaults. Each step instance can then override certain settings, similar to how sub-classing in OOP
works. One read mapping step instance may use GRCh37 for the reference and another instance might use
GRCh38 (not shown in this example).

• The purple-colored box represents static data such as the reference sequence, annotations, databases such as
dbSNP or dbNSFP. These static data files are created and maintained independently of the individual projects.

• The green box represents the raw input data, e.g., a directory containing the FASTQ reads for each sample.
While, of course, raw data can be shared over projects, the data directories are usually under control of the
project manager while the static data is under control of the maintainer of the static data project of Cubit.

• The brown box represents the bio-medical sample sheets with metadata that describe the data sets of the experi-
ment and also (at least) parts of the experimental setup.

The number of steps might seem intimidating at first, but you will quickly get used to this arrangement. After all,
the configuration is closely related to the directories. Further, static data and raw data paths are just put into the
configuration once and otherwise you do not have to deal with it. Also, there is UI support for generating and updating
the bio-medical sample sheet files.

4.3.2 Components of a Pipeline Step Instance Excecution

The following figure shows the components involved when executing a pipeline step (in this case, the NGS read mapping
step).

project
config.yaml

working dir.
config.yaml

project
directory

ngs_mapping
working directory

cubi_pipeline
Python package

ngs_mapping
workflow code

Pipeline
Execution

raw data files

static data files

bio medical
sample sheets

Fig. 2: Overview of the components involved when executing a pipeline step in a working directory.

The different parts are as follows:

4.3. An Example Project 11

SNAPPY Pipeline Documentation, Release master

• The working directory project/ngs_mapping.

• The step-level configuration in project/ngs_mapping/config.yaml.

• The project-level configurations in project/.snappy_pipeline/config.yaml (by convention).

• The snappy_pipeline Python package installed centrally.

• The bio-medical sample sheets with the data sets to use. (The project-wide configuration files point at these
files.)

• The static data files setup by the Cubit administrator (here, it would be the reference FASTA path and the read
mapper index location).

• The raw data files to be processed by the pipeline step (here, it would be the sample FASTQ files).

4.3.3 How FASTQ files are found

In its data_sets section, the project-level configuration file provides search paths and search patterns to find the input
FASTQ files. snappy internally combines these paths & search patterns with the sample-specific path information
provided in the sample sheet. In the end, FASTQ files retained for processing are files which paths match:

<configuration search path>/<sample-specific folder>/../<search pattern>

The search will loop over provided search paths & search patterns. Paired reads files are coupled by similarity of their
path. Note that when the Folder entry is absent from the sample sheet, the library name is used instead.

However, this default behaviour can be overriden using the path_link_in option (which is available only for steps
that use FASTQ files as input). When this configuration option is not empty, snappy will use it instead of the list of
search paths defined in the data_set part. It will also ignore the folder information, and rely instead on the library
names to search FASTQ files. The search path becomes:

<path_link_in>/<library_name>/../<search_pattern>

This mechanism enables steps that generate FASTQ files on output, for example adapter trimming. In that case, the
input of the mapping step can be redirected towards the ouput of the adapter trimming step using this method.

4.3.4 Overview of the Somatic Variant Pipeline

The following figure shows an overview the simple somatic variant calling pipeline used in the example.

The configuration, static data files, and bio-medical sample sheets are used for the input of all pipeline steps. The raw
data files are used for the input of the NGS mapping. The resulting read alignments are used as the input for the somatic
variant calling. The resulting somatic variant files are then used as the input for the somatic variant annotation.

Within each step the following actions are performed:

1. The reads are first mapped to a reference genome, yielding BAM files contaning the read alignments. (Additional
text files with the alignment reports are also generated at this step, but this pipeline does not use these files in the
downstream steps.)

2. Then, the pairs of BAM alignments for the matched tumor/normal samples for each individual are given to a
somatic variant caller that produces a VCF file with the list of somatic variants for each patient.

3. Finally, variant annotations are added to indicate whether each event is present in the snp databases specified in
the configuration (e.g., dbSNP or COSMIC) and functional mutation impact predictions are also added using the
tool specified in the configuration (e.g., using MutationTaster).

12 Chapter 4. Overview

SNAPPY Pipeline Documentation, Release master

NGS Mapping
Somatic Variant

Calling
Somatic Variant

Annotation

raw data files

configuration static data files
bio medical

sample sheets

Fig. 3: Overview of the steps in somatic variant calling pipeline.

4.3.5 The Matched Cancer Data Schema

For the somatic variant calling, the matched cancer study bio-medical data sheet schema is used. It is described in full
in the BioMed Sheets project. Here, we give a summary so this document is self-contained.

• The study contains a number of patients/donors, and each individual is associated with a normal and a tumor
sample.

• From each sample, an WES library is generated and sequenced; for each library, there is a directory with the
library name, storing the FASTQ files from sequencing.

4.3.6 Project Directory Setup

The project directory is setup with the following helper tool:

$ snappy-start-project --directory somatic_project
[...]
Do not forget to fill out your README.md file!

SUCCESS: all done, have a nice day!

$ tree -a somatic_project
somatic_project/
+-- .snappy_pipeline/
| `-- config.yaml
`-- README.md

The config.yaml file is setup with common configuration for the pipeline steps. The template used uses the paths
specific to the Cubit installation on the BIH cluster. In the far future, custom templates will be used for this and the
generic files will contain “TODO” entries for changes.

Further, a project-wide README.md file is setup in which you can place documentation on the project.

$ cd somatic_project
$ head .snappy_pipeline/config.yaml

(continues on next page)

4.3. An Example Project 13

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

CUBI Pipeline Project "somatic_project" Configuration
#
created: 2017-02-03T12:57:17.302044

Step Configuration␣
→˓==
#
Configuration for paths with static data. This has been preconfigured for the paths␣
→˓on the BIH
cluster.
#
static_data_config:

4.3.7 Working Directories for Step Instances

Next, we create the different step instances that we want to use using snappy-start-step. Note that this will extend
the .snappy_pipeline/config.yaml file if there is no configuration entry for the given step. A different name for
the instance can be given using the --step parameter.

Adding the ngs_mapping step creates the required directory and configuration files pointing to the global configuration
for extension. Note how the difference in the project-wide configuration (and all other files created or modified) is
displayed in the script’s output.

See NGS Mapping for the default configuration of the ngs_mapping step. For all configuration settings that have
no default and are marked with a # required comment (case insensitive), these markers are copied to the project
configuration so you know which settings to adjust.

$ cd somatic_project
$ snappy-start-step --step ngs_mapping
[...]
INFO: applying the following change:

--- a/.snappy_pipeline/config.yaml 2017-02-03T12:47:32.246833
+++ b/.snappy_pipeline/config.yaml 2017-02-03T12:49:29.811706
@@ -22,7 +22,12 @@
Configuration for the individual steps. These can be filled by the snappy-start-step␣
→˓command
or initialized already with snappy-start-project.
#
-step_config: {}
+step_config:
+ ngs_mapping:
+ bwa:
+ path_index: # REQUIRED
+ star:
+ path_index: # REQUIRED

Data Sets␣
→˓===
#
[...]

(continues on next page)

14 Chapter 4. Overview

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

$ tree ngs_mapping
ngs_mapping/
|-- config.yaml
|-- pipeline_job.sh
`-- sge_log

$ cat ngs_mapping/config.yaml
pipeline_step:
name: ngs_mapping
version: 1

$ref: 'file://../.snappy/config.yaml'

Similarly, adding somatic_variant_calling adds configuration for somatic variant calling.

$ snappy-start-step --step somatic_variant_calling
[...]
INFO: applying the following change:

--- a/.snappy/config.yaml 2017-02-03T13:11:10.023648
+++ b/.snappy/config.yaml 2017-02-03T13:11:20.806588
@@ -29,6 +29,10 @@

star:
path_index: REQUIRED # REQUIRED

+ somatic_variant_calling:
+ path_ngs_mapping: ../ngs_mapping # REQUIRED
+ scalpel:
+ path_target_regions: # REQUIRED
Data Sets␣
→˓===
#
Define data sets. The search paths and patterns are given per data set.
[...]

$ tree somatic_variant_calling
somatic_variant_calling
+-- sge_log/
`-- config.yaml

The same is true for adding somatic_variant_annotation.

$ snappy-start-step --step somatic_variant_annotation
[...]
INFO: applying the following change:

--- a/.snappy_pipeline/config.yaml 2017-02-03T13:11:20.807090
+++ b/.snappy_pipeline/config.yaml 2017-02-03T13:12:22.693821
@@ -33,6 +33,10 @@

path_ngs_mapping: ../ngs_mapping # REQUIRED
scalpel:
path_target_regions: # REQUIRED

(continues on next page)

4.3. An Example Project 15

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

+ somatic_variant_annotation:
+ path_somatic_variant_calling: ../somatic_variant_calling # REQUIRED
+ oncotator:
+ path_corpus: REQUIRED # REQUIRED
Data Sets␣
→˓===
#
Define data sets. The search paths and patterns are given per data set.
@@ -50,4 +54,5 @@
- /fast/projects/medgen_genomes/2017-01-09_acheiropodia
type: germline_variants
#
-data_sets: {}
+data_sets # REQUIRED
+: {}
[...]
$ tree somatic_variant_annotation
somatic_variant_annotation
+-- sge_log/
`-- config.yaml

4.3.8 Adding Sample Sheets

Note: The following does not work yet but should in the future

TODO

For matched cancer studies, the most simple way of creating a sample sheet is starting from the shortcut TSV. The
following creates a sample sheet TSV shortcut. This is then converted into a JSON bio-med sample sheet.

$ cat <<"EOF" | sed $'s/[\t]\+/\t/g' > .snappy_pipeline/01_data_set.tsv
[Metadata]
schema cancer_matched
schema_version v1
title Example matched cancer tumor/normal study
description The study has two patients, P001 has one tumor sample, P002 has two

[Data]
patientName sampleName isTumor libraryType folderName
P001 N1 N WES P001-N1-DNA1-WES1
P001 T1 Y WES P001-T1-DNA1-WES1
P001 T1 Y mRNA_seq P001-T1-RNA1-mRNA_seq1
P002 N1 N WES P002-N1-DNA1-WES1
P002 T1 Y WES P002-T1-DNA1-WES1
P002 T1 Y WES P002-T1-RNA1-mRNA_seq1
P002 T2 Y WES P002-T2-DNA1-WES1
P002 T2 Y mRNA_seq P002-T2-RNA1-mRNA_seq1
EOF
$ biomedsheets -t matched_cancer \

--input .snappy_pipeline/01_data_set.tsv \
(continues on next page)

16 Chapter 4. Overview

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

--output .snappy_pipeline/01_data_set.json
$ head .snappy_pipeline/01_data_set.json
[TODO]

Note: Updating entries in data set TSV files does not work yet and requires a re-starting from scratch. As the data set
primary keys are part of the file names, changing the PK of sample or library will require cleaning all output files and
re-running the whole pipeline. Overall, it is better to only use the JSON sheet files and the corresponding tools and
helpers.

Now, we have to register the data set in the configuration. Ensure that the data_sets entry look as follows. Replace
<path-to-demo-dir> with the path to the demo directory of the snappy_pipeline project.

data_sets:
first_batch:
file: 01_first_batch.tsv
search_patterns:
Note that currently only "left" and "right" key known
- {'left': '*/L???/*_R1.fastq.gz', 'right': '*/L???/*_R2.fastq.gz'}

search_paths: ['<path-to-demo-dir>/input/01_first_batch']
type: matched_cancer

The full configuration format will be described elsewhere. It is notable, however, that there also is an optional
naming_scheme property for each batch. Using this, you can select between naming based on secondary ID and
pk (secondary_id_pk) and secondary ID alone (only_secondary_id).

4.3.9 Executing the Project’s Pipeline

After executing the steps from above, our pipeline is ready to use. Each pipeline step instance will automatically run
each predecessor within the pipeline. Thus, it is enough to execute the pipeline in the somatic_variant_annotation
step.

For running, locally use:

$ cd somatic_variant_annotation
$ snappy-snake -p --step somatic_variant_annotation

For running with Snakemake profile on the cluster, use the --snappy-pipeline-use-profile parameter.

$ cd somatic_variant_annotation
$ snappy-snake -p --step somatic_variant_annotation --snappy-pipeline-use-profile "cubi-
→˓v1"

4.3. An Example Project 17

SNAPPY Pipeline Documentation, Release master

18 Chapter 4. Overview

CHAPTER

FIVE

PIPELINE STEP INTRODUCTION

This part contains the links into the pipeline step documentation. The pipeline steps themselves are documented in
the source code for easier syncing between the step code and documentation. For your convenience, the pipeline step
documentation appears here in addition to the API documentation.

The first chapter Generic Pipeline Step Description gives an overview of the overall structure of a pipeline step. The
following chapters each document one implemented pipeline step.

19

SNAPPY Pipeline Documentation, Release master

20 Chapter 5. Pipeline Step Introduction

CHAPTER

SIX

GENERIC PIPELINE STEP DESCRIPTION

Generally, each pipeline step takes some input, processes it in a work directory, and then creates an output directory
with the pipeline step’s result. Each pipeline step is implemented as a Snakemake workflow and a step instance
corresponds to a Snakemake working directory on the file system.

6.1 File System Layout

The overall layout for a pipeline step instance is as follows:

working_dir_name/
+-- [input/]
+-- work/
+-- output/
`-- config.yaml

6.1.1 Directory input/

An optional input directory. This is directory is only created if files are to be linked into the directory that are not
generated by another workflow. For example, the ngs_mapping pipeline step links in variable data the input FASTQ
files into the input/ directory.

Note that static data (such as reference, read mapper indices, annotation, etc., all that can be statically configured) is
not linked into the input/ directory. In contrast, the variant_calling step does not need an input/ directory as it
only works on the read alignments generated by the ngs_mapping step.

6.1.2 Directory work/

This is the working directory that contains all results of the pipeline, including logs as well as intermediary and final
results. Intermediary results should be marked by the Snakemake temp() directive but there is no guarantee that
temporary files are removed after the pipeline step finishes. Also note that you as a user have to consider the directory
structure and file names in work/ as unstable.

In short: in work/, the pipeline step authors can do whatever they want, including changing it between minor versions.

21

https://snakemake.bitbucket.org

SNAPPY Pipeline Documentation, Release master

6.1.3 Directory output/

This is the “public” output directory. It contains a stable directory structure with stable names. The output/ directory
contains no files but rather symlinks into the work/ directory.

By convention, the directories and file names should mirror the ones in work/ (and thus form a subset) for simplicity.
However, in order to keep semantic versioning, this convention might be broken to keep paths in the output/ directory
stable when something in work/ changes.

6.2 Step Instance Configuration config.yaml

Each step instance must have a configuration file config.yaml. The file contains a YAML or JSON-formatted direc-
tory structure and typically looks as follows.

pipeline_step:
name: ngs_mapping
version: 1

$ref: 'file://../.snappy/config.yaml'

Consider the second part first. Here, JSON Pointer notation is used for referencing and loading the file ../.
snappy_pipeline/config.yaml at the root of YAML file. This file contains the basic configuration for all pipeline
step instances in a project. The configuration file config.yaml in the pipeline step instance directory can then override
settings as fit. These settings are placed into the YAML file and on loading of the config.yaml file, the configuration
settings of both the including and the included file will be merged. The settings of the including file overriding the
settings from the included files.

Consider the first part now. Here, it is simply configured that the pipeline step to be executed is named ngs_mapping
and version 1 is assumed to be present. The versioning allows the pipeline step to check whether there are incompati-
bilities in the pipeline step implementation version and the version used when writing the step instance configuration.

Note: Background Data Sets

These data sets are available for use as background data. The provided data can be sparser (e.g., only NGS library for
normal samples in an otherwise matched cancer/normal study).

The execution of cubi-snake in a directory will not automatically generate these files. Rather, they are only generated
when used in a pipeline step such as somatic_targeted_cnv_calling.

22 Chapter 6. Generic Pipeline Step Description

http://semver.org
https://tools.ietf.org/html/rfc6901

CHAPTER

SEVEN

ADAPTER TRIMMING

Implementation of the adapter_trimming step

The adapter_trimming step performs adapter & quality trimming of reads (DNA or RNA). The tools are highly con-
figurable, and provide feedback of the success of the operation.

7.1 Step Input

For each library defined in all sample sheets, the instances of this step will search for the input files according to the
configuration. The found read files will be linked into work/input_links/{library_name} (status quo, not a output
path, thus path not guaranteed to be stable between minor versions).

The search paths can be overridden using the step configuration option path_link_in. path_link_in is a general
features that enables pre-processing steps, typically before mapping.

7.1.1 Data Set Configuration

Consider the following data set definition from the main configuration file.

data_sets:
first_batch:
file: 01_first_batch.tsv
search_patterns:
Note that currently only "left" and "right" key known
- {'left': '*/L???/*_R1.fastq.gz', 'right': '*/L???/*_R2.fastq.gz'}

search_paths: ['../input/01_first_batch']

Here, the data set first_batch is defined. The sample sheet file is named 01_first_batch.tsv and looked for in
the relative path to the configuration file. The input search will be start in the (one, but could be more than one) path
../input/01_first_batch (relative to the directory containing the configuration file). The sample sheet provides
a folderName extraInfo entry for each NGS library. This folder name is searched for (e.g., P001-N1-DNA1-WES).
Once such a folder is found, the patterns in the values of the dict search_patterns are used for locating the paths of
the actual files.

Currently, the only supported keys in the search_patterns dict are "left" and "right"" (the latter can be omitted
when only searching for single-end reads).

Consider the following example:

23

SNAPPY Pipeline Documentation, Release master

../input/
`-- 01_first_batch

|-- P001-N1-DNA1-WES1
| `-- 42KF5AAXX
| `-- L001
| |-- P001-N1-DNA1-WES1_R1.fastq.gz
| |-- P001-N1-DNA1-WES1_R1.fastq.gz.md5
| |-- P001-N1-DNA1-WES1_R2.fastq.gz
| `-- P001-N1-DNA1-WES1_R2.fastq.gz.md5
[...]

Here, the folder 01_first_batch will be searched for a directory named P001-N1-DNA1-WES. After
finding, the relative paths 42KF5AAXX/L001/P001-N1-DNA1-WES1_R1.fastq.gz and 42KF5AAXX/L001/
P001-N1-DNA1-WES1_R2.fastq.gz will be found and used for the left/right parts of a paired read set.

7.1.2 Overriding data set confguration with path_link_in

When the config option path_link_in is set, it takes precedence on the search paths defined in the data set configu-
ration.

The searching for input files will follow the same rules as defined in the data set configuration, except that the base path
for the search provided by one single path defined in the configuration of the step.

Mixing Single-End and Paired-End Reads

By default, it is checked that for each search_pattern, the same number of matching files has to be found, otherwise
directories are ignored. The reason is to reduce the number of possible errors when linking in files. You can change
this behaviour by specifying mixed_se_pe: True in the data set information. Then, it will be allowed to have the
matches for the right entry to be empty. However, you will need to consistently have either SE or PE data for each
library; it is allowed to mix SE and PE libraries within one project but not to have PE and SE data for one library.

Note that mixing single-end and paired-end reads is not (yet) supported when overriding the data set configuration by
setting a value to the configuration option path_link_in.

7.2 Step Output

Adapter trimming will be performed for all NGS libraries in all sample sheets. For each combination of tool library, a
directory {tool}/{lib_name}-{lib_pk}/out will be created. Therein, trimmed fastq files will be created.

The input structure and file names will be maintained on output. For example, it might look as follows for the example
from above:

output/
+-- bbduk
| `-- out
| `-- P001-N1-DNA1-WES1
| |-- 42KF5AAXX
| | `-- L001
| | |-- P001-N1-DNA1-WES1_R1.fastq.gz
| | |-- P001-N1-DNA1-WES1_R1.fastq.gz.md5
| | |-- P001-N1-DNA1-WES1_R2.fastq.gz

(continues on next page)

24 Chapter 7. Adapter Trimming

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

| | `-- P001-N1-DNA1-WES1_R2.fastq.gz.md5
| `-- .done
[...]

7.3 Default Configuration

The default configuration is as follows.

Default configuration adapter_trimming
step_config:
adapter_trimming:
path_link_in: "" # OPTIONAL Override data set configuration search paths for FASTQ␣

→˓files
tools: [bbduk, fastp] # REQUIRED, available: 'bbduk' and 'fastp'.
bbduk:
adapter_sequences: [] # REQUIRED
- /fast/work/groups/cubi/projects/biotools/static_data/app_support/bbtools/39.01/

→˓resources/adapters.fa
- /fast/work/groups/cubi/projects/biotools/static_data/app_support/bbtools/39.01/

→˓resources/phix174_ill.ref.fa.gz
Note: The author recommends setting tpe=t & tbo=t when adapter trimming paired␣

→˓reads.
num_threads: 8

Non-default parameters from https://www.biostars.org/p/268221/
& https://github.com/ewels/MultiQC/issues/1146#issuecomment-607980076

Input parameters:
interleaved: auto # (int) t/f overrides interleaved autodetection.
qin: auto # Input quality offset: 33 (Sanger), 64, or auto.
copyundefined: f # (cu) Process non-AGCT IUPAC reference bases by making all

possible unambiguous copies. Intended for short motifs
or adapter barcodes, as time/memory use is exponential.

Output parameters:
nzo: t # Only write statistics about ref sequences with nonzero hits.
qout: auto # Output quality offset: 33 (Sanger), 64, or auto.
statscolumns: 3 # (cols) Number of columns for stats output, 3 or 5.

5 includes base counts.
rename: f # Rename reads to indicate which sequences they matched.
refnames: f # Use names of reference files rather than scaffold IDs.
trd: f # Truncate read and ref names at the first whitespace.
ordered: f # Set to true to output reads in same order as input.

Histogram output parameters:
gcbins: auto # Number gchist bins. Set to 'auto' to use read length.
maxhistlen: 6000 # Set an upper bound for histogram lengths; higher uses

more memory. The default is 6000 for some histograms
and 80000 for others.

(continues on next page)

7.3. Default Configuration 25

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

Histograms for mapped sam/bam files only:
histbefore: t # Calculate histograms from reads before processing.
idbins: 100 # Number idhist bins. Set to 'auto' to use read length.

Processing parameters:
k: 21 # Kmer length used for finding contaminants. Contaminants

shorter than k will not be found. k must be at least 1.
bbduk default: 27

rcomp: t # Look for reverse-complements of kmers in addition to
forward kmers.

maskmiddle: t # (mm) Treat the middle base of a kmer as a wildcard, to
increase sensitivity in the presence of errors.

minkmerhits: 1 # (mkh) Reads need at least this many matching kmers
to be considered as matching the reference.

minkmerfraction: 0.0 # (mkf) A reads needs at least this fraction of its total
kmers to hit a ref, in order to be considered a match.
If this and minkmerhits are set, the greater is used.

mincovfraction: 0.0 # (mcf) A reads needs at least this fraction of its total
bases to be covered by ref kmers to be considered a match.
If specified, mcf overrides mkh and mkf.

hammingdistance: 1 # (hdist) Maximum Hamming distance for ref kmers (subs only).
Memory use is proportional to (3*K)^hdist.
bbduk default: 0

qhdist: 0 # Hamming distance for query kmers; impacts speed, not memory.
editdistance: 0 # (edist) Maximum edit distance from ref kmers (subs

and indels). Memory use is proportional to (8*K)^edist.
hammingdistance2: 0 # (hdist2) Sets hdist for short kmers, when using mink.
qhdist2: 0 # Sets qhdist for short kmers, when using mink.
editdistance2: 0 # (edist2) Sets edist for short kmers, when using mink.
forbidn: f # (fn) Forbids matching of read kmers containing N.

By default, these will match a reference 'A' if
hdist>0 or edist>0, to increase sensitivity.

removeifeitherbad: t # (rieb) Paired reads get sent to 'outmatch' if either is
match (or either is trimmed shorter than minlen).
Set to false to require both.

trimfailures: f # Instead of discarding failed reads, trim them to 1bp.
This makes the statistics a bit odd.

findbestmatch: f # (fbm) If multiple matches, associate read with sequence
sharing most kmers. Reduces speed.

skipr1: f # Don't do kmer-based operations on read 1.
skipr2: f # Don't do kmer-based operations on read 2.
ecco: f # For overlapping paired reads only. Performs error-

correction with BBMerge prior to kmer operations.

Trimming/Filtering/Masking parameters:
Note - if ktrim, kmask, and ksplit are unset, the default behavior is kfilter.
All kmer processing modes are mutually exclusive.
Reads only get sent to 'outm' purely based on kmer matches in kfilter mode.

ktrim: r # Trim reads to remove bases matching reference kmers.
Values:
f (don't trim), [bbduk default]

(continues on next page)

26 Chapter 7. Adapter Trimming

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

r (trim to the right),
l (trim to the left)

kmask: "" # Replace bases matching ref kmers with another symbol.
Allows any non-whitespace character, and processes short
kmers on both ends if mink is set. 'kmask: lc' will
convert masked bases to lowercase.

maskfullycovered: f # (mfc) Only mask bases that are fully covered by kmers.
ksplit: f # For single-ended reads only. Reads will be split into

pairs around the kmer. If the kmer is at the end of the
read, it will be trimmed instead. Singletons will go to
out, and pairs will go to outm. Do not use ksplit with
other operations such as quality-trimming or filtering.

mink: 11 # Look for shorter kmers at read tips down to this length,
when k-trimming or masking. 0 means disabled. Enabling
this will disable maskmiddle.
bbduk default: 0 (disabled)

qtrim: rl # Trim read ends to remove bases with quality below trimq.
Performed AFTER looking for kmers. Values:
rl (trim both ends),
f (neither end), [bbduk default]
r (right end only),
l (left end only),
w (sliding window).

trimq: 25 # Regions with average quality BELOW this will be trimmed,
if qtrim is set to something other than f. Can be a
floating-point number like 7.3.
Very strict quality threshold, bbduk default: 6

minlength: 35 # (ml) Reads shorter than this after trimming will be
discarded. Pairs will be discarded if both are shorter.
bbduk default: 10

mlf: 0 # (minlengthfraction) Reads shorter than this fraction of
original length after trimming will be discarded.

minavgquality: 0 # (maq) Reads with average quality (after trimming) below
this will be discarded.

maqb: 0 # If positive, calculate maq from this many initial bases.
minbasequality: 0 # (mbq) Reads with any base below this quality (after

trimming) will be discarded.
maxns: -1 # If non-negative, reads with more Ns than this

(after trimming) will be discarded.
mcb: 0 # (minconsecutivebases) Discard reads without at least

this many consecutive called bases.
ottm: f # (outputtrimmedtomatch) Output reads trimmed to shorter

than minlength to outm rather than discarding.
tp: 0 # (trimpad) Trim this much extra around matching kmers.
tbo: f # (trimbyoverlap) Trim adapters based on where paired

reads overlap.
strictoverlap: t # Adjust sensitivity for trimbyoverlap mode.
minoverlap: 14 # Require this many bases of overlap for detection.
mininsert: 40 # Require insert size of at least this for overlap.

Should be reduced to 16 for small RNA sequencing.
tpe: f # (trimpairsevenly) When kmer right-trimming, trim both

reads to the minimum length of either.

(continues on next page)

7.3. Default Configuration 27

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

forcetrimleft: 0 # (ftl) If positive, trim bases to the left of this position
(exclusive, 0-based).

forcetrimright: 0 # (ftr) If positive, trim bases to the right of this position
(exclusive, 0-based).

forcetrimright2: 0 # (ftr2) If positive, trim this many bases on the right end.
forcetrimmod: 5 # (ftm) If positive, right-trim length to be equal to zero,

modulo this number.
bbduk default: 0

restrictleft: 0 # If positive, only look for kmer matches in the
leftmost X bases.

restrictright: 0 # If positive, only look for kmer matches in the
rightmost X bases.

mingc: 0 # Discard reads with GC content below this.
maxgc: 1 # Discard reads with GC content above this.
gcpairs: t # Use average GC of paired reads. Deprecated option?
Also affects gchist.
tossjunk: f # Discard reads with invalid characters as bases.
swift: f # Trim Swift sequences: Trailing C/T/N R1, leading G/A/N R2.

Header-parsing parameters - these require Illumina headers:
chastityfilter: f # (cf) Discard reads with id containing ' 1:Y:' or ' 2:Y:'.
barcodefilter: f # Remove reads with unexpected barcodes if barcodes is set,

or barcodes containing 'N' otherwise. A barcode must be
the last part of the read header. Values:
t: Remove reads with bad barcodes.
f: Ignore barcodes.
crash: Crash upon encountering bad barcodes.

barcodes: "" # File of barcodes.
xmin: -1 # If positive, discard reads with a lesser X coordinate.
ymin: -1 # If positive, discard reads with a lesser Y coordinate.
xmax: -1 # If positive, discard reads with a greater X coordinate.
ymax: -1 # If positive, discard reads with a greater Y coordinate.

Polymer trimming:
trimpolya: 0 # If greater than 0, trim poly-A or poly-T tails of

at least this length on either end of reads.
trimpolygleft: 0 # If greater than 0, trim poly-G prefixes of at least this

length on the left end of reads. Does not trim poly-C.
trimpolygright: 8 # If greater than 0, trim poly-G tails of at least this

length on the right end of reads. Does not trim poly-C.
bbduk default: don't trim polyG (trimpolyg=0)

trimpolyg: 0 # This sets both left and right at once.
filterpolyg: 8 # If greater than 0, remove reads with a poly-G prefix of

at least this length (on the left).
Note: there are also equivalent poly-C flags.

Entropy/Complexity parameters:
entropy: -1 # Set between 0 and 1 to filter reads with entropy below

that value. Higher is more stringent.
entropywindow: 50 # Calculate entropy using a sliding window of this length.
entropyk: 5 # Calculate entropy using kmers of this length.
minbasefrequency: 0 # Discard reads with a minimum base frequency below this.

(continues on next page)

28 Chapter 7. Adapter Trimming

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

entropytrim: f # Values:
f: (false) Do not entropy-trim.
r: (right) Trim low entropy on the right end only.
l: (left) Trim low entropy on the left end only.
rl: (both) Trim low entropy on both ends.

entropymask: f # Values:
f: (filter) Discard low-entropy sequences.
t: (true) Mask low-entropy parts of sequences with N.
lc: Change low-entropy parts of sequences to lowercase.

entropymark: f # Mark each base with its entropy value. This is on a scale
of 0-41 and is reported as quality scores, so the output
should be fastq or fasta+qual.

NOTE: If set, entropytrim overrides entropymask.

Cardinality estimation:
cardinality: f # (loglog) Count unique kmers using the LogLog algorithm.
cardinalityout: f # (loglogout) Count unique kmers in output reads.
loglogk: 31 # Use this kmer length for counting.
loglogbuckets: 2048 # Use this many buckets for counting.

fastp:
num_threads: 4

trim_front1: 0 # trimming how many bases in front for read1,␣
→˓default is 0 (int [=0])

trim_tail1: 0 # trimming how many bases in tail for read1,␣
→˓default is 0 (int [=0])

max_len1: 0 # if read1 is longer than max_len1, then trim␣
→˓read1 at its tail to make it as long as max_len1. Default 0 means no limitation (int␣
→˓[=0])

trim_front2: 0 # trimming how many bases in front for read2.␣
→˓If it's not specified, it will follow read1's settings (int [=0])

trim_tail2: 0 # trimming how many bases in tail for read2.␣
→˓If it's not specified, it will follow read1's settings (int [=0])

max_len2: 0 # if read2 is longer than max_len2, then trim␣
→˓read2 at its tail to make it as long as max_len2. Default 0 means no limitation. If it
→˓'s not specified, it will follow read1's settings (int [=0])

dedup: False # enable deduplication to drop the duplicated␣
→˓reads/pairs

dup_calc_accuracy: 0 # accuracy level to calculate duplication (1~
→˓6), higher level uses more memory (1G, 2G, 4G, 8G, 16G, 24G). Default 1 for no-dedup␣
→˓mode, and 3 for dedup mode. (int [=0])

dont_eval_duplication: True # don't evaluate duplication rate to save time␣
→˓and use less memory.

trim_poly_g: True # force polyG tail trimming, by default␣
→˓trimming is automatically enabled for Illumina NextSeq/NovaSeq data

poly_g_min_len: 8 # the minimum length to detect polyG in the␣
→˓read tail. 10 by default. (int [=10])

trim_poly_x: False # enable polyX trimming in 3' ends.
poly_x_min_len: 10 # the minimum length to detect polyX in the␣

→˓read tail. 10 by default. (int [=10])
cut_front: False # move a sliding window from front (5') to tail,

→˓ drop the bases in the window if its mean quality < threshold, stop otherwise.(continues on next page)

7.3. Default Configuration 29

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

cut_tail: False # move a sliding window from tail (3') to front,
→˓ drop the bases in the window if its mean quality < threshold, stop otherwise.

cut_right: False # move a sliding window from front to tail, if␣
→˓meet one window with mean quality < threshold, drop the bases in the window and the␣
→˓right part, and then stop.

cut_front_window_size: 4 # the window size option of cut_front, default␣
→˓to cut_window_size if not specified (int [=4])

cut_front_mean_quality: 20 # the mean quality requirement option for cut_
→˓front, default to cut_mean_quality if not specified (int [=20])

cut_tail_window_size: 4 # the window size option of cut_tail, default␣
→˓to cut_window_size if not specified (int [=4])

cut_tail_mean_quality: 20 # the mean quality requirement option for cut_
→˓tail, default to cut_mean_quality if not specified (int [=20])

cut_right_window_size: 4 # the window size option of cut_right, default␣
→˓to cut_window_size if not specified (int [=4])

cut_right_mean_quality: 20 # the mean quality requirement option for cut_
→˓right, default to cut_mean_quality if not specified (int [=20])

disable_quality_filtering: False # quality filtering is enabled by default. If␣
→˓this option is specified, quality filtering is disabled

qualified_quality_phred: 15 # the quality value that a base is qualified.␣
→˓Default 15 means phred quality >=Q15 is qualified. (int [=15])

unqualified_percent_limit: 40 # how many percents of bases are allowed to be␣
→˓unqualified (0~100). Default 40 means 40% (int [=40])

n_base_limit: 5 # if one read's number of N base is >n_base_
→˓limit, then this read/pair is discarded. Default is 5 (int [=5])

average_qual: 0 # if one read's average quality score <avg_qual,
→˓ then this read/pair is discarded. Default 0 means no requirement (int [=0])

disable_length_filtering: False # length filtering is enabled by default. If␣
→˓this option is specified, length filtering is disabled

length_required: 15 # reads shorter than length_required will be␣
→˓discarded, default is 15. (int [=15])

length_limit: 0 # reads longer than length_limit will be␣
→˓discarded, default 0 means no limitation. (int [=0])

low_complexity_filter: False # enable low complexity filter. The complexity␣
→˓is defined as the percentage of base that is different from its next base (base[i] !=␣
→˓base[i+1]).

complexity_threshold: 30 # the threshold for low complexity filter (0~
→˓100). Default is 30, which means 30% complexity is required. (int [=30])

filter_by_index1: "" # specify a file contains a list of barcodes␣
→˓of index1 to be filtered out, one barcode per line (string [=])

filter_by_index2: "" # specify a file contains a list of barcodes␣
→˓of index2 to be filtered out, one barcode per line (string [=])

filter_by_index_threshold: 0 # the allowed difference of index barcode for␣
→˓index filtering, default 0 means completely identical. (int [=0])

correction: False # enable base correction in overlapped regions␣
→˓(only for PE data), default is disabled

overlap_len_require: 30 # the minimum length to detect overlapped␣
→˓region of PE reads. This will affect overlap analysis based PE merge, adapter trimming␣
→˓and correction. 30 by default. (int [=30])

overlap_diff_limit: 5 # the maximum number of mismatched bases to␣
→˓detect overlapped region of PE reads. This will affect overlap analysis based PE merge,
→˓ adapter trimming and correction. 5 by default. (int [=5])

(continues on next page)

30 Chapter 7. Adapter Trimming

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

overlap_diff_percent_limit: 20 # the maximum percentage of mismatched bases␣
→˓to detect overlapped region of PE reads. This will affect overlap analysis based PE␣
→˓merge, adapter trimming and correction. Default 20 means 20%. (int [=20])

umi: False # enable unique molecular identifier (UMI)␣
→˓preprocessing

umi_loc: "" # specify the location of UMI, can be (index1/
→˓index2/read1/read2/per_index/per_read, default is none (string [=])

umi_len: 0 # if the UMI is in read1/read2, its length␣
→˓should be provided (int [=0])

umi_prefix: "" # if specified, an underline will be used to␣
→˓connect prefix and UMI (i.e. prefix=UMI, UMI=AATTCG, final=UMI_AATTCG). No prefix by␣
→˓default (string [=])

umi_skip: 0 # if the UMI is in read1/read2, fastp can skip␣
→˓several bases following UMI, default is 0 (int [=0])

overrepresentation_analysis: False # enable overrepresented sequence analysis.

7.4 Available Adapter Trimming Tools

The following adpter trimming tools are currently available

• "bbduk"

• "fastp"

7.4. Available Adapter Trimming Tools 31

SNAPPY Pipeline Documentation, Release master

32 Chapter 7. Adapter Trimming

CHAPTER

EIGHT

GERMLINE BUILD TARGET SEQUENCE GCNV MODEL

Implementation of the helper_gcnv_model_targeted step

The helper_gcnv_model_targeted step takes as the input the results of the ngs_mapping step (aligned germline
reads) and builds a model that can be used by GATK4 gCNV for a particular library kit.

8.1 Step Input

The step uses Snakemake sub workflows for the result of the ngs_mapping (aligned reads BAM files).

8.2 Step Output

All donors will be used to generate the two parts of the required gCNV model, specifically: ploidy-model and
cnv_calls-model. Both are required to execute gCNV in CASE mode.

For example, the relevant directories might look as follows:

work/
+-- bwa.gcnv_contig_ploidy.<library_kit_name>

`-- out
`-- bwa.gcnv_contig_ploidy.<library_kit_name>

|-- SAMPLE_0
| |-- contig_ploidy.tsv
| |-- global_read_depth.tsv
| |-- mu_psi_s_log__.tsv
| |-- sample_name.txt
| `-- std_psi_s_log__.tsv
|-- [...]
`-- bwa.gcnv_contig_ploidy.<library_kit_name>

`-- ploidy-model
|-- contig_ploidy_prior.tsv
|-- gcnvkernel_version.json
|-- interval_list.tsv
|-- mu_mean_bias_j_lowerbound__.tsv
|-- mu_psi_j_log__.tsv
|-- ploidy_config.json
|-- std_mean_bias_j_lowerbound__.tsv
`-- std_psi_j_log__.tsv

+-- bwa.gcnv_call_cnvs.<library_kit_name>.***_of_***
(continues on next page)

33

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

`-- out
`-- bwa.gcnv_call_cnvs.<library_kit_name>.***_of_***

|-- cnv_calls-calls
| |-- SAMPLE_0
| `-- [...]
| |-- [...]
|-- cnv_calls-model
| |-- denoising_config.json
| |-- gcnvkernel_version.json
| |-- interval_list.tsv
| |-- log_q_tau_tk.tsv
| |-- mu_W_tu.tsv
| |-- mu_ard_u_log__.tsv
| |-- mu_log_mean_bias_t.tsv
| |-- mu_psi_t_log__.tsv
| |-- std_W_tu.tsv
| |-- std_ard_u_log__.tsv
| |-- std_log_mean_bias_t.tsv
| `-- std_psi_t_log__.tsv
`-- cnv_calls-tracking

`-- [...]

8.3 Global Configuration

• At the moment, no global configuration is used.

8.4 Default Configuration

The default configuration is as follows.

Default configuration helper_gcnv_model_targeted
step_config:

helper_gcnv_model_targeted:
path_ngs_mapping: ../ngs_mapping # REQUIRED

gcnv:
path_uniquely_mapable_bed: null # REQUIRED - path to BED file with uniquely␣

→˓mappable regions.
path_target_interval_list_mapping: [] # REQUIRED - define one or more set of␣

→˓target intervals.
The following will match both the stock IDT library kit and the ones
with spike-ins seen from Yale genomics. The path above would be
mapped to the name "default".
- name: IDT_xGen_V1_0
pattern: "xGen Exome Research Panel V1\\.0*"
path: "path/to/targets.bed"

34 Chapter 8. Germline Build Target Sequence gCNV Model

CHAPTER

NINE

GERMLINE BUILD WGS GCNV MODEL

Implementation of the helper_gcnv_model_wgs step

The helper_gcnv_model_wgs step takes as the input the results of the ngs_mapping step (aligned germline reads)
and builds a model that can be used by GATK4 gCNV. Important: the workflow assumes that all samples in the cohort
use the same library kit and all are WGS.

9.1 Step Input

The step uses Snakemake sub workflows for the result of the ngs_mapping (aligned reads BAM files).

9.2 Step Output

All donors will be used to generate the two parts of the required gCNV model, specifically: ploidy-model and
cnv_calls-model. Both are required to execute gCNV in CASE mode.

For example, the relevant directories might look as follows:

work/
+-- bwa.gcnv_contig_ploidy.default

`-- out
`-- bwa.gcnv_contig_ploidy.default

|-- SAMPLE_0
| |-- contig_ploidy.tsv
| |-- global_read_depth.tsv
| |-- mu_psi_s_log__.tsv
| |-- sample_name.txt
| `-- std_psi_s_log__.tsv
|-- [...]
`-- bwa.gcnv_contig_ploidy.default

`-- ploidy-model
|-- contig_ploidy_prior.tsv
|-- gcnvkernel_version.json
|-- interval_list.tsv
|-- mu_mean_bias_j_lowerbound__.tsv
|-- mu_psi_j_log__.tsv
|-- ploidy_config.json
|-- std_mean_bias_j_lowerbound__.tsv
`-- std_psi_j_log__.tsv

(continues on next page)

35

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

+-- bwa.gcnv_call_cnvs.default.***_of_***
`-- out

`-- bwa.gcnv_call_cnvs.default.***_of_***
|-- cnv_calls-calls
| |-- SAMPLE_0
| `-- [...]
| |-- [...]
|-- cnv_calls-model
| |-- denoising_config.json
| |-- gcnvkernel_version.json
| |-- interval_list.tsv
| |-- log_q_tau_tk.tsv
| |-- mu_W_tu.tsv
| |-- mu_ard_u_log__.tsv
| |-- mu_log_mean_bias_t.tsv
| |-- mu_psi_t_log__.tsv
| |-- std_W_tu.tsv
| |-- std_ard_u_log__.tsv
| |-- std_log_mean_bias_t.tsv
| `-- std_psi_t_log__.tsv
`-- cnv_calls-tracking

`-- [...]

9.3 Global Configuration

• At the moment, no global configuration is used.

9.4 Default Configuration

The default configuration is as follows.

Default configuration helper_gcnv_model_wgs
step_config:
helper_gcnv_model_wgs:
path_ngs_mapping: ../ngs_mapping # REQUIRED

gcnv:
Path to BED file with uniquely mappable regions.
path_uniquely_mapable_bed: null # REQUIRED

36 Chapter 9. Germline Build WGS gCNV Model

CHAPTER

TEN

HLA TYPING

Implementation of the hla_typing step

The hla_typing step allows for the HLA typing from NGS read data (WGS, targeted DNA sequencing, or RNA-seq).

10.1 Step Input

Gene fusion calling starts at the raw RNA-seq reads. Thus, the input is very similar to one of ngs_mapping step.

See Step Input for more information.

10.2 Step Output

HLA typing will be performed for all NGS libraries in all sample sheets. For each combination of HLA typer and
library, a directory {hla_typer}.{lib_name}-{lib_pk}/out will be created. Therein, the following files will be
created:

• {hla_typer}.{lib_name}-{lib_pk}.txt

• {hla_typer}.{lib_name}-{lib_pk}.txt.md5

For example, it might look as follows for the example from above:

output/
+-- optitype.P001-N1-DNA1-WES1-4
| `-- out
| |-- optitype.P001-N1-DNA1-WES1-4.txt
| `-- optitype.P001-N1-DNA1-WES1-4.txt.md5
[...]

10.3 Default Configuration

The default configuration is as follows.

Default configuration ngs_mapping
step_config:
hla_typing:
path_ngs_mapping: ../ngs_mapping
path_link_in: "" # OPTIONAL Override data set configuration search paths for FASTQ␣

→˓files (continues on next page)

37

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

tools: [optitype] # REQUIRED - available: 'optitype' and 'arcashla'
optitype:
max_reads: 5000 # suggestion by OptiType author
num_mapping_threads: 4

arcashla:
mapper: star

10.4 Available HLA Typing Tools

The following HLA typing tools are currently available

• "optitype"

• "arcashla"

38 Chapter 10. HLA Typing

CHAPTER

ELEVEN

IGV SESSION GENERATION

Implementation of the igv_session_generation step

This step takes as the input the output of the following steps and generates an IGV session XML file that displays the
results as genome tracks:

• ngs_mapping

• variant_annotation or variant_calling

11.1 Step Input

The IGV session generation step takes as the input of the following CUBI pipeline steps:

• ngs_mapping

• variant_annotation or variant_calling

11.2 Step Output

11.3 Global Configuration

11.4 Default Configuration

The default configuration is as follows.

Default configuration igv_session_generation
step_config:
igv_session_generation:
path_ngs_mapping: ../ngs_mapping
One of the following must be given!
path_variant_phasing: ''
path_variant_annotation: ''
path_variant_calling: ''
tools_ngs_mapping: [] # defaults to ngs_mapping tool
tools_variant_calling: [] # defaults to variant_annotation tool

39

SNAPPY Pipeline Documentation, Release master

11.5 Reports

Currently, no reports are generated.

40 Chapter 11. IGV Session Generation

CHAPTER

TWELVE

NGS DATA QC

Implementation of the ngs_data_qc step

12.1 Default Configuration

The default configuration is as follows.

Default configuration ngs_mapping
step_config:
ngs_data_qc:
path_link_in: "" # OPTIONAL Override data set configuration search paths for FASTQ␣

→˓files
tools: [fastqc, picard] # REQUIRED - available: 'fastqc' & 'picard' (for QC on bam␣

→˓files)
picard:
path_ngs_mapping: ../ngs_mapping # REQUIRED
path_to_baits: "" # Required when CollectHsMetrics is among the␣

→˓programs
path_to_targets: "" # When missing, same as baits
bait_name: "" # Exon enrichment kit name (optional)
programs: [] # Available metrics:

* Generic metrics [* grouped into CollectMultipleMetrics]
- CollectAlignmentSummaryMetrics *
- CollectBaseDistributionByCycle *
- CollectGcBiasMetrics *
- CollectInsertSizeMetrics *
- CollectJumpingLibraryMetrics
- CollectOxoGMetrics
- CollectQualityYieldMetrics *
- CollectSequencingArtifactMetrics *
- EstimateLibraryComplexity
- MeanQualityByCycle *
- QualityScoreDistribution *

* WGS-specific metrics
- CollectRawWgsMetrics
- CollectWgsMetrics
- CollectWgsMetricsWithNonZeroCoverage

* Other assay-specific metrics
- CollectHsMetrics Whole Exome Sequencing
- CollectTargetedPcrMetrics Panel sequencing

(continues on next page)

41

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

- CollectRnaSeqMetrics mRNA sequencing, not␣
→˓implemented yet

- CollectRbsMetrics bi-sulfite sequencing, not␣
→˓implemented yet

42 Chapter 12. NGS Data QC

CHAPTER

THIRTEEN

NGS MAPPING

Implementation of the ngs_mapping step

The ngs_mapping step allows for the alignment of NGS data with standard read mappers, such as BWA for DNA data
and STAR for RNA data. Also, it provides functionality to compute post-alignment statistics, such as the coverage of
target (e.g., exome or panel) regions.

There is a distinction made between “normal” DNA reads (short reads from Illumina) and “long” DNA reads, such as
PacBio/Oxford Nanopore. Again, the NGS mapping step will perform alignment of all NGS libraries.

The precise actions that are performed in the alignment are defined by the wrappers (e.g., the bwa or star) wrappers.
Generally, this includes converting into BAM format, sorting by coordinate, an indexing using a BAI file. For short
reads, this can include marking of duplicates using Samblaster and depends on the actual configuration (see below for
the default configuration).

13.1 Properties

overall stability

stable

applicable to

germline and somatic read alignment

generally applicable to

short and long read DNA and RNA sequencing

13.2 Step Input

For each library defined in all sample sheets, the instances of this step will search for the input files according to the
configuration. The found read files will be linked into work/input_links/{library_name} (status quo, not a output
path, thus path not guaranteed to be stable between minor versions).

This is different to the other steps that use the output of previous steps for their input.

43

SNAPPY Pipeline Documentation, Release master

13.2.1 Data Set Configuration

Consider the following data set definition from the main configuration file.

data_sets:
first_batch:
file: 01_first_batch.json
search_patterns:
Note that currently only "left" and "right" key known
- {'left': '*/L???/*_R1.fastq.gz', 'right': '*/L???/*_R2.fastq.gz'}

search_paths: ['../input/01_first_batch']

Here, the data set first_batch is defined. The sample sheet file is named 01_first_batch.json and looked for in
the relative path to the configuration file. The input search will be start in the (one, but could be more than one) path
../input/01_first_batch (relative to the directory containing the configuration file). The sample sheet provides
a folderName extraInfo entry for each NGS library. This folder name is searched for (e.g., P001-N1-DNA1-WES).
Once such a folder is found, the patterns in the values of the dict search_patterns are used for locating the paths of
the actual files.

Currently, the only supported keys in the search_patterns dict are "left" and "right"" (the lattern can be omitted
when only searching for single-end reads).

Consider the following example:

../input/
`-- 01_first_batch

|-- P001-N1-DNA1-WES1
| `-- 42KF5AAXX
| `-- L001
| |-- P001-N1-DNA1-WES1_R1.fastq.gz
| |-- P001-N1-DNA1-WES1_R1.fastq.gz.md5
| |-- P001-N1-DNA1-WES1_R2.fastq.gz
| `-- P001-N1-DNA1-WES1_R2.fastq.gz.md5
[...]

Here, the folder 01_first_batch will be searched for a directory named P001-N1-DNA1-WES. After
finding, the relative paths 42KF5AAXX/L001/P001-N1-DNA1-WES1_R1.fastq.gz and 42KF5AAXX/L001/
P001-N1-DNA1-WES1_R2.fastq.gz will be found and used for the left/right parts of a paired read set.

44 Chapter 13. NGS Mapping

SNAPPY Pipeline Documentation, Release master

Mixing Single-End and Paired-End Reads

By default, it is checked that for each search_pattern, the same number of matching files has to be found, otherwise
directories are ignored. The reason is to reduce the number of possible errors when linking in files. You can change
this behaviour by specifying mixed_se_pe: True in the data set information. Then, it will be allowed to have the
matches for the right entry to be empty. However, you will need to consistently have either SE or PE data for each
library; it is allowed to mix SE and PE libraries within one project but not to have PE and SE data for one library.

13.3 Step Output

For each NGS library with name library_name and each read mapper mapper that the library has been aligned with,
the pipeline step will create a directory output/{mapper}.{library_name}/out with symlinks of the following
names to the resulting sorted BAM files with corresponding BAI and MD5 files.

• {mapper}.{library_name}.bam

• {mapper}.{library_name}.bam.bai

• {mapper}.{library_name}.bam.md5

• {mapper}.{library_name}.bam.bai.md5

In addition, several tools are used to automatically generate reports based on the BAM and BAI files. See the Reports
section below for more details

The BAM files are only postprocessed if configured so.

Note: In contrast to other pipeline steps, the NGS mapping step will also generate the BAM files for the background
data sets as there are currently problems with Snakemake sub workflows and input functions.

13.4 Global Configuration

• static_data_config/reference/path must be set appropriately

13.5 Default Configuration

The default configuration is as follows.

step_config:
ngs_mapping:
Aligners to use for the different NGS library types
tools:
dna: [] # Required if DNA analysis; otherwise, leave empty. Example: 'bwa'.
rna: [] # Required if RNA analysis; otherwise, leave empty. Example: 'star'.
dna_long: [] # Required if long-read mapper used; otherwise, leave empty. Example:

→˓'minimap2'.
path_link_in: "" # OPTIONAL Override data set configuration search paths for FASTQ␣

→˓files
Thresholds for targeted sequencing coverage QC. Enabled by specifying
the path_arget_regions setting above

(continues on next page)

13.3. Step Output 45

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

target_coverage_report:
Mapping from enrichment kit to target region BED file, for either computing per--

→˓target
region coverage or selecting targeted exons.
#
The following will match both the stock IDT library kit and the ones
with spike-ins seen fromr Yale genomics. The path above would be
mapped to the name "default".
- name: IDT_xGen_V1_0
pattern: "xGen Exome Research Panel V1\\.0*"
path: "path/to/targets.bed"
path_target_interval_list_mapping: []
Maximal/minimal/warning coverage
max_coverage: 200
min_cov_warning: 20 # >= 20x for WARNING
min_cov_ok: 50 # >= 50x for OK
detailed_reporting: false # per-exon details (cannot go into multiqc)

Depth of coverage collection, mainly useful for genomes.
bam_collect_doc:
enabled: false
window_length: 1000

Compute fingerprints with ngs-chew
ngs_chew_fingerprint:
enabled: true

Configuration for BWA
bwa:
path_index: REQUIRED # Required if listed in ngs_mapping.tools.dna; otherwise, can␣

→˓be removed.
num_threads_align: 16
num_threads_trimming: 8
num_threads_bam_view: 4
num_threads_bam_sort: 4
memory_bam_sort: 4G
trim_adapters: false
mask_duplicates: true
split_as_secondary: false # -M flag

Configuration for BWA-MEM2
bwa_mem2:
path_index: REQUIRED # Required if listed in ngs_mapping.tools.dna; otherwise, can␣

→˓be removed.
bwa_mode: auto # in ['auto', 'bwa-aln', 'bwa-mem']
num_threads_align: 16
num_threads_trimming: 8
num_threads_bam_view: 4
num_threads_bam_sort: 4
memory_bam_sort: 4G
trim_adapters: false
mask_duplicates: true
split_as_secondary: true # -M flag

Configuration for STAR
star:
path_index: REQUIRED # Required if listed in ngs_mapping.tools.rna; otherwise, can␣

→˓be removed. (continues on next page)

46 Chapter 13. NGS Mapping

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

path_features: "" # Required for computing gene counts
num_threads_align: 16
num_threads_trimming: 8
num_threads_bam_view: 4
num_threads_bam_sort: 4
memory_bam_sort: 4G
genome_load: NoSharedMemory
raw_star_options: ''
align_intron_max: 1000000 # ENCODE option
align_intron_min: 20 # ENCODE option
align_mates_gap_max: 1000000 # ENCODE option
align_sjdb_overhang_min: 1 # ENCODE option
align_sj_overhang_min: 8 # ENCODE option
out_filter_mismatch_n_max: 999 # ENCODE option
out_filter_mismatch_n_over_l_max: 0.04 # ENCODE option
out_filter_multimap_n_max: 20 # ENCODE option
out_filter_type: BySJout # ENCODE option
out_filter_intron_motifs: None # or for cufflinks: RemoveNoncanonical
out_sam_strand_field: None # or for cufflinks: intronMotif
transcriptome: false # true to output transcript coordinate bam for␣

→˓RSEM
trim_adapters: false
mask_duplicates: false
include_unmapped: true

strandedness:
path_exon_bed: REQUIRED # Location of usually highly expressed genes. Known␣

→˓protein coding genes is a good choice
strand: -1 # -1: unknown value, use infer_, 0: unstranded, 1:␣

→˓forward, 2: reverse (from featurecounts)
threshold: 0.85 # Minimum proportion of reads mapped to forward/reverse␣

→˓direction to call the protocol
Configuration for Minimap2
minimap2:
mapping_threads: 16

13.6 Available Read Mappers

The following read mappers are available for the alignment of DNA-seq and RNA-seq reads.

• (short/Illumina) DNA

– "bwa"

– "bwa_mem2"

– "external"

• (short/Illumina) RNA-seq

– "star"

– "external"

• (long/PacBio/Nanopore) DNA

13.6. Available Read Mappers 47

SNAPPY Pipeline Documentation, Release master

– "minimap2"

– "external"

13.7 Notes on STAR mapper configuration

Recent versions of STAR offer the possibility to output gene counts and alignments of reads on the transcritpome, rather
than on the genome.

In both cases, this requires that STAR is aware of the genes, transcripts, exon & introns features. These can be provided
either during the indexing stage, or with recent versions, during mapping.

The configuration provides the possibility to pass to STAR the location of a gtf file describing the features. This removes
the need to include gene models into the generation of indices, so that the user can select the gene models (either from
ENSEMBL or GENCODE, for example).

When the configuration option path_features is set, the step will output a table of expression counts for all genes, in
output/star.{library_name}/out/star.{library_name}.GeneCounts.tab.

If the configuration option transcriptome is set to true, the step will output a bam file of reads mapped to the transcrip-
tome (output/stat.{library_name}/out/star.{library_name}.toTranscriptome.bam). STAR will rely on the path_features
configuration option, or on the gene models embedded in the indices to generate the mappings. If both are absent,
the step will fail. Note that the mappings to the transcriptome will not be indexes using samtools index, because the
absence of the positional mappings.

13.8 Reports

Currently, the following reports are generated based on the BAM and BAI file output by this step.

General Alignment Statistics (.txt) The tools samtools bamstats, samtools flagstats and samtools
idxstats are always called by default, and are linked out into the output/{mapper}.{library_name}/
report/bam_qc directory. The file names for these reports (and their MD5s) use the following naming conven-
tion:

• {mapper}.{library_name}.bamstats.txt

• {mapper}.{library_name}.flagstats.txt

• {mapper}.{library_name}.idxstats.txt

• {mapper}.{library_name}.bamstats.txt.md5

• {mapper}.{library_name}.flagstats.txt.md5

• {mapper}.{library_name}.idxstats.txt.md5

For example, it will look as follows for the example bam files shown above:

output/
+-- bwa.P001-N1-DNA1-WES1
| |-- out
| | |-- bwa.P001-N1-DNA1-WES1.bam
| | |-- bwa.P001-N1-DNA1-WES1.bam.bai
| | |-- bwa.P001-N1-DNA1-WES1.bam.bai.md5
| | `-- bwa.P001-N1-DNA1-WES1.bam.md5
| `-- report

(continues on next page)

48 Chapter 13. NGS Mapping

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

| `-- bam_qc
| |-- bwa.P001-N1-DNA1-WES1.bam.bamstats.txt
| |-- bwa.P001-N1-DNA1-WES1.bam.bamstats.txt.md5
| |-- bwa.P001-N1-DNA1-WES1.bam.flagstats.txt
| |-- bwa.P001-N1-DNA1-WES1.bam.flagstats.txt.md5
| |-- bwa.P001-N1-DNA1-WES1.bam.idxstats.txt
| `-- bwa.P001-N1-DNA1-WES1.bam.idxstats.txt.md5
[...]

Target Coverage Report (.txt) If ngs_mapping/path_target_regions is set to a BED file with the target regions
(either capture regions of capture kits in the case of targeted sequencing or exons for WES/WGS sequencing)
a target coverage report is generated and linked out into the output/{mapper}.{library_name}/report/
cov_qc directory. The file names for these reports (and their MD5s) use the following naming convention:

• {mapper}.{library_name}.txt

• {mapper}.{library_name}.txt.md5

For example, it will look as follows for the example bam files shown above:

output/
+-- bwa.P001-N1-DNA1-WES1
| `-- report
| |-- bam_qc
| | [...]
| `-- cov_qc
| |-- bwa.P001-N1-DNA1-WES1.txt
| `-- bwa.P001-N1-DNA1-WES1.txt.md5
[...]

Genome-wide Coverage Count (.bed.gz) If ngs_mapping/compute_coverage_bed to be set to true a report is
generated that gives the depth at each base of the genome. (note: currently this report only appears in work/ and
is not yet linked out into the output/ directory).

(TODO: add file name rules and example)

work/
+-- bwa.P001-N1-DNA1-WES1
| `-- report
| `-- bam_qc
| |-- bwa.P001-N1-DNA1-WES1.bam.bamstats.d
| | |-- acgt-cycles.gp
| | |-- acgt-cycles.png
| | |-- coverage.gp
| | |-- coverage.png
| | |-- gc-content.gp
| | |-- gc-content.png
| | |-- gc-depth.gp
| | |-- gc-depth.png
| | |-- indel-cycles.gp
| | |-- indel-cycles.png
| | |-- indel-dist.gp
| | |-- indel-dist.png
| | |-- index.html

(continues on next page)

13.8. Reports 49

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

| | |-- insert-size.gp
| | |-- insert-size.png
| | |-- quals2.gp
| | |-- quals2.png
| | |-- quals3.gp
| | |-- quals3.png
| | |-- quals.gp
| | |-- quals-hm.gp
| | |-- quals-hm.png
| | `-- quals.png
| [...]
[...]

50 Chapter 13. NGS Mapping

CHAPTER

FOURTEEN

NGS SANITY CHECKING

Implementation of the ngs_sanity_checking step

Perform sanity checking from mapped reads for germline sample sheets, optionally taking the result of hla_typing
into consideration.

Note: Status: not implemented yet

14.1 Step Input

Note: TODO

14.2 Step Output

Note: TODO

14.3 Default Configuration

The default configuration is as follows.

Default configuration ngs_sanity_checking
step_config:
ngs_sanity_checking:
path_ngs_mapping: ../path_ngs_mapping # REQUIRED
path_hla_typing: ../path_hla_typing # OPTIONAl
check_hla: true

51

SNAPPY Pipeline Documentation, Release master

52 Chapter 14. NGS Sanity Checking

CHAPTER

FIFTEEN

SOMATIC GENE FUSION CALLING

Implementation of the somatic_gene_fusion_calling step

The somatic_gene_fusion calling step allows for the detection of gene fusions from RNA-seq data in cancer. The
wrapped tools start at the raw RNA-seq reads and generate filtered lists of predicted gene fusions.

15.1 Step Input

Gene fusion calling starts at the raw RNA-seq reads. Thus, the input is very similar to one of ngs_mapping step.

See Step Input for more information.

15.2 Step Output

Note: TODO

15.3 Default Configuration

The default configuration is as follows.

step_config:
somatic_gene_fusion_calling:
path_link_in: "" # OPTIONAL Override data set configuration search paths for FASTQ␣

→˓files
tools: ['fusioncatcher', 'jaffa', 'arriba', 'defuse', 'hera', 'pizzly', 'star_fusion

→˓'] # REQUIRED, available: 'fusioncatcher', 'jaffa', 'arriba', 'defuse', 'hera', 'pizzly',
→˓'star_fusion'.

fusioncatcher:
data_dir: REQUIRED # REQUIRED
configuration: null # optional
num_threads: 16

pizzly:
kallisto_index: REQUIRED # REQUIRED
transcripts_fasta: REQUIRED # REQUIRED
annotations_gtf: REQUIRED # REQUIRED

(continues on next page)

53

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

kmer_size: 31
hera:
path_index: REQUIRED # REQUIRED
path_genome: REQUIRED # REQUIRED

star_fusion:
path_ctat_resource_lib: REQUIRED

defuse:
path_dataset_directory: REQUIRED

arriba:
path_index: REQUIRED # REQUIRED STAR path index (preferably 2.7.10 or later)
features: REQUIRED # REQUIRED Gene features (for ex. ENCODE or ENSEMBL)␣

→˓in gtf format
blacklist: "" # optional (provided in the arriba distribution, see /

→˓fast/work/groups/cubi/projects/biotools/static_data/app_support/arriba/v2.3.0)
known_fusions: "" # optional
tags: "" # optional (can be set to the same path as known_

→˓fusions)
structural_variants: "" # optional
protein_domains: "" # optional
num_threads: 8
trim_adapters: false
num_threads_trimming: 2
star_parameters:
- " --outFilterMultimapNmax 50"
- " --peOverlapNbasesMin 10"
- " --alignSplicedMateMapLminOverLmate 0.5"
- " --alignSJstitchMismatchNmax 5 -1 5 5"
- " --chimSegmentMin 10"
- " --chimOutType WithinBAM HardClip"
- " --chimJunctionOverhangMin 10"
- " --chimScoreDropMax 30"
- " --chimScoreJunctionNonGTAG 0"
- " --chimScoreSeparation 1"
- " --chimSegmentReadGapMax 3"
- " --chimMultimapNmax 50"

15.4 Available Gene Fusion Callers

• fusioncatcher

54 Chapter 15. Somatic Gene Fusion Calling

CHAPTER

SIXTEEN

SOMATIC NEOEPITOPE PREDICTION

Implementation of the somatic_neoepitope_prediction step

The somatic_neoepitope_prediction step allows for the prediction of neoepitopes from somatic (small) variant calling
results and a transcript database such as ENSEMBL. Further, the step allows for the binding prediction to a given set
of HLA alleles.

Note: Status: not implemented yet

16.1 Step Input

Note: TODO

16.2 Step Output

Note: TODO

16.3 Default Configuration

The default configuration is as follows.

step_config:
somatic_neoepitope_prediction:
path_somatic_variant_calling: REQUIRED # REQUIRED

55

SNAPPY Pipeline Documentation, Release master

56 Chapter 16. Somatic Neoepitope Prediction

CHAPTER

SEVENTEEN

SOMATIC NGS SANITY CHECKING

Implementation of the somatic_ngs_sanity_checking step

Perform sanity checking from mapped reads for cancer sample sheets, optionally taking the result of hla_typing into
consideration.

Note: Status: not implemented yet

17.1 Step Input

Note: TODO

17.2 Step Output

Note: TODO

17.3 Default Configuration

The default configuration is as follows.

Default configuration somatic_ngs_sanity_checking
step_config:
somatic_ngs_sanity_checking:
path_ngs_mapping: ../path_ngs_mapping # REQUIRED
path_hla_typing: ../path_hla_typing # OPTIONAl
check_hla: true

57

SNAPPY Pipeline Documentation, Release master

58 Chapter 17. Somatic NGS Sanity Checking

CHAPTER

EIGHTEEN

SOMATIC PURITY & PLOIDY ESTIMATE

Implementation of purity and ploidy checking for somatic NGS samples

18.1 Default Configuration

The default configuration is as follows.

step_config:
somatic_purity_ploidy_estimate:
tools: ['ascat'] # REQUIRED - available: 'ascat'
tool_cnv_calling: cnvetti
Configuration with read mapper and path to mapping output. Will use this
for generating a pileup using samtools for obtaining the b allele
fraction and computing coverage.
tool_ngs_mapping: bwa
path_ngs_mapping: ../ngs_mapping
Configuration of ASCAT method.
ascat:
BED file with loci for B allele frequency.
b_af_loci: REQUIRED # REQUIRED

59

SNAPPY Pipeline Documentation, Release master

60 Chapter 18. Somatic Purity & Ploidy Estimate

CHAPTER

NINETEEN

SOMATIC TARGETED SEQ. CNV CALLING

Implementation of the somatic_target_seq_cnv_calling step

This step allows for the detection of CNV events for cancer samples from targeted sequenced (e.g., exomes or large
panels). The wrapped tools start from the aligned reads (thus off ngs_mapping) and generate CNV calls for somatic
variants.

The wrapped tools implement different strategies. Some work “reference free” and just use the somatic BAM files for
their input, some work in “matched cancer normal mode” and need the cancer and normal BAM files, others again need
both normal and cancer BAM files, and additionally a set of non-cancer BAM files for their background.

19.1 Step Input

Gene somatic CNV calling for targeted sequencing starts off the aligned reads, i.e., ngs_mapping.

19.2 Step Output

Generally, the following links are generated to output/.

Note: Tool-Specific Output

As the only integrated tool is cnvkit at the moment, the output is very tailored to the result of this tool. In the future,
this section will contain “common” output and tool-specific output sub sections.

• {mapper}.cnvkit.{lib_name}-{lib_pk}/out/

– {mapper}.cnvkit.{lib_name}-{lib_pk}.bed

– {mapper}.cnvkit.{lib_name}-{lib_pk}.seg

– {mapper}.cnvkit.{lib_name}-{lib_pk}.vcf.gz

– {mapper}.cnvkit.{lib_name}-{lib_pk}.vcf.gz.tbi

• {mapper}.cnvkit.{lib_name}-{lib_pk}/report

– {mapper}.cnvkit.{lib_name}-{lib_pk}.diagram.pdf

– {mapper}.cnvkit.{lib_name}-{lib_pk}.scatter.pdf

– {mapper}.cnvkit.{lib_name}-{lib_pk}.heatmap.pdf

– {mapper}.cnvkit.{lib_name}-{lib_pk}.heatmap.chr1.pdf

61

SNAPPY Pipeline Documentation, Release master

– . . .

– {mapper}.cnvkit.{lib_name}-{lib_pk}.scatter.chrX.pdf

• {mapper}.cnvkit.{lib_name}-{lib_pk}/report

– {mapper}.cnvkit.{lib_name}-{lib_pk}.breaks.txt

– {mapper}.cnvkit.{lib_name}-{lib_pk}.genemetrics.txt

– {mapper}.cnvkit.{lib_name}-{lib_pk}.gender.txt

– {mapper}.cnvkit.{lib_name}-{lib_pk}.metrics.txt

– {mapper}.cnvkit.{lib_name}-{lib_pk}.segmetrics.txt

For example:

output/
|-- bwa.cnvkit.P001-T1-DNA1-WES1-000007
| `-- out
| |-- bwa.cnvkit.P001-T1-DNA1-WES1-000007.bed
| |-- bwa.cnvkit.P001-T1-DNA1-WES1-000007.seg
| `-- bwa.cnvkit.P001-T1-DNA1-WES1-000007.vcf
|-- bwa.cnvkit.P002-T1-DNA1-WES1-000016
| `-- report
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.diagram.pdf
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.heatmap.pdf
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.scatter.pdf
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.heatmap.chr1.pdf
| |-- ...
| `-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.scatter.chrX.pdf
|-- bwa.cnvkit.P002-T1-DNA1-WES1-000016
| `-- report
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.breaks.txt
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.genemetrics.txt
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.gender.txt
| |-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.metrics.txt
| `-- bwa.cnvkit.P002-T1-DNA1-WES1-000016.segmetrics.txt
[...]

Note that tool cnvetti doesn’t follow the snappy convention above: the tool name is followed by an underscore & the
action, where the action is one of coverage, segment and postprocess. For example, the output directory would
contain a directory named bwa.cnvetti_coverage.P002-T1-DNA1-WES1-000016.

19.3 Default Configuration

The default configuration is as follows.

Default configuration somatic_targeted_seq_cnv_calling
step_config:
somatic_targeted_seq_cnv_calling:
tools: ['cnvkit'] # REQUIRED - available: 'cnvkit', 'copywriter', 'cnvetti_on_target'␣

→˓and 'cnvetti_off_target'
path_ngs_mapping: ../ngs_mapping # REQUIRED
cnvkit:

(continues on next page)

62 Chapter 19. Somatic Targeted Seq. CNV Calling

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

path_target: REQUIRED # Usually ../panel_of_normals/output/cnvkit.
→˓target/out/cnvkit.target.bed

path_antitarget: REQUIRED # Usually ../panel_of_normals/output/cnvkit.
→˓antitarget/out/cnvkit.antitarget.bed

path_panel_of_normals: REQUIRED # Usually ../panel_of_normals/output/{mapper}.
→˓cnvkit.create_panel/out/{mapper}.cnvkit.panel_of_normals.cnn

plot: True # Generate plots (very slow)
min_mapq: 0 # [coverage] Mininum mapping quality score to␣

→˓count a read for coverage depth
count: False # [coverage] Alternative couting algorithm
gc_correction: True # [fix] Use GC correction
edge_correction: True # [fix] Use edge correction
rmask_correction: True # [fix] Use rmask correction
BCBIO uses
seg_method: haar
seg_threshold: 0.0001
-- OR
seg_method: cbs
seg_threshold: 0.000001
segmentation_method: cbs # [segment] One of cbs, flasso, haar, hmm, hmm-

→˓tumor, hmm-germline, none
segmentation_threshold: 0.000001 # [segment] Significance threshold (hmm methods:␣

→˓smoothing window size)
drop_low_coverage: False # [segment, call, genemetrics] Drop very low␣

→˓coverage bins
drop_outliers: 10 # [segment] Drop outlier bins (0 for no outlier␣

→˓filtering)
smooth_cbs: True # [segment] Additional smoothing of CBS␣

→˓segmentation (WARNING- not the default value)
center: "" # [call] Either one of mean, median, mode,␣

→˓biweight, or a constant log2 ratio value.
filter: ampdel # [call] One of ampdel, cn, ci, sem (merging␣

→˓segments flagged with the specified filter), "" for no filtering
calling_method: threshold # [call] One of threshold, clonal, none
call_thresholds: "-1.1,-0.25,0.2,0.7" # [call] Thresholds for calling integer copy␣

→˓number
ploidy: 2 # [call] Ploidy of sample cells
purity: 0 # [call] Estimated tumor cell fraction (0 for␣

→˓discarding tumor cell purity)
gender: "" # [call, diagram] Specify the chromosomal sex of␣

→˓all given samples as male or female. Guess when missing
male_reference: False # [call, diagram] Create male reference
diagram_threshold: 0.5 # [diagram] Copy number change threshold to␣

→˓label genes
diagram_min_probes: 3 # [diagram] Min number of covered probes to␣

→˓label genes
shift_xy: True # [diagram] Shift X & Y chromosomes according to␣

→˓sample sex
breaks_min_probes: 1 # [breaks] Min number of covered probes for a␣

→˓break inside the gene
genemetrics_min_probes: 3 # [genemetrics] Min number of covered probes to␣

→˓consider a gene

(continues on next page)

19.3. Default Configuration 63

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

genemetrics_threshold: 0.2 # [genemetrics] Min abs log2 change to consider␣
→˓a gene

genemetrics_alpha: 0.05 # [genemetrics] Significance cutoff
genemetrics_bootstrap: 100 # [genemetrics] Number of bootstraps
segmetrics_alpha: 0.05 # [segmetrics] Significance cutoff
segmetrics_bootstrap: 100 # [segmetrics] Number of bootstraps
smooth_bootstrap: False # [segmetrics] Smooth bootstrap results

copywriter:
path_target_regions: REQUIRED # REQUIRED
bin_size: 20000 # TODO: make actually configurable
plot_genes: REQUIRED # Path to civic annotation
genome: hg19 # Could be hg38 (consider setting prefix to 'chr' when using␣

→˓GRCh38.v1)
features: EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75
prefix: ''
nThread: 8

cnvetti_on_target:
path_target_regions: REQUIRED # REQUIRED

cnvetti_off_target:
path_target_regions: REQUIRED # REQUIRED
window_length: 20000

19.4 Available Somatic Targeted CNV Caller

• cnvkit

64 Chapter 19. Somatic Targeted Seq. CNV Calling

CHAPTER

TWENTY

SOMATIC VARIANT ANNOTATION

Implementation of the somatic_variant_annotation step

The somatic_variant_annotation step takes as the input the results of the somatic_variant_calling step
(bgzip-ed and indexed VCF files) and performs annotation of the somatic variants. The result are annotated versions
of the somatic variant VCF files (again bgzip-ed and indexed VCF files).

20.1 Step Input

The somatic variant annotation step uses Snakemake sub workflows for using the result of the
somatic_variant_calling step.

The main assumption is that each VCF file contains the two matched normal and tumor samples.

20.2 Step Input

The variant annotation step uses Snakemake sub workflows for using the result of the variant_calling step.

20.3 Step Output

Users can annotate all genes & transcripts overlapping with the variant locus, or they can select one representative gene
and transcript for annotation. In the latter case, the output vcf file will only contain one annotation per variant, while
in the former case, there might be over 100 annotations for each variant.

The ordering of features driving the representative annotation choice is under user control. The default order is:

1. biotype: protein coding genes come first, it is unclear what is the order for other types of genes

2. mane: the MANE transcript is selected before other transcripts

3. appris: the APPRIS principal isoform is selected before alternates

4. tsl: Transcript Support Level values in increasing order

5. ccds: Transcripts with CCDS ids are selected before those without

6. canonical: ENSEMBL canonical transcripts are selected before the others

7. rank: VEP internal ranking is used

8. length: longer transcripts are preferred to shorter ones

65

https://www.ncbi.nlm.nih.gov/refseq/MANE/
https://academic.oup.com/bioinformatics/article/38/Supplement_2/ii89/6701991
http://www.ensembl.org/info/genome/genebuild/transcript_quality_tags.html
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi

SNAPPY Pipeline Documentation, Release master

This order is (hopefully) suitable for cBioPortal export, as well defined transcripts from protein-coding genes are se-
lected when possible. However, it is recommended to check the full annotation for variants in or nearby disease-relevant
genes.

All annotators generate a vcf with one annotation per transcript, and some annotators (only ENSEMBL’s Variant Ef-
fect Predictor in the current implementation) can also produce another output containing all annotations. The sin-
gle annotation vcf is named <mapper>.<caller>.<annotator>.vcf.gz and the full annotation output is named
<mapper>.<caller>.<annotator>.full.vcf.gz

20.4 Global Configuration

TODO

20.5 Default Configuration

The default configuration is as follows.

Default configuration variant_annotation
step_config:
variant_annotation:
path_variant_calling: ../variant_calling
tools:
- vep

vep:
We will always run VEP in cache mode. You have to provide the directory to the
cache to use (VEP would be ``~/.vep``).
cache_dir: null # OPTIONAL
The cache version to use. gnomAD v2 used 85, gnomAD v3.1 uses 101.
cache_version: "85"
The assembly to use. gnomAD v2 used "GRCh37", gnomAD v3.1 uses "GRCh38".
assembly: "GRCh37"
The flag selecting the transcripts. One of "gencode_basic", "refseq", and

→˓"merged".
tx_flag: "gencode_basic"
Number of threads to use with forking, set to 0 to disable forking.
num_threads: 16
Additional flags.
more_flags: "--af_gnomade --af_gnomadg"
The --buffer_size parameter
buffer_size: 100000

66 Chapter 20. Somatic Variant Annotation

SNAPPY Pipeline Documentation, Release master

20.6 Reports

Currently, no reports are generated.

20.6. Reports 67

SNAPPY Pipeline Documentation, Release master

68 Chapter 20. Somatic Variant Annotation

CHAPTER

TWENTYONE

SOMATIC VARIANT CALLING

Implementation of the somatic_variant_calling step

The somatic_variant_calling step takes as the input the results of the ngs_mapping step (aligned reads in BAM
format) and performs somatic variant calling. The result are variant files with somatic variants (bgzip-ed and indexed
VCF files).

Usually, the somatic variant calling step is followed by the somatic_variant_annotation step.

21.1 Step Input

The somatic variant calling step uses Snakemake sub workflows for using the result of the ngs_mapping step.

21.2 Step Output

For each tumor DNA NGS library with name lib_name/key lib_pk and each read mapper mapper that the library has
been aligned with, and the variant caller var_caller, the pipeline step will create a directory output/{mapper}.
{var_caller}.{lib_name}-{lib_pk}/out with symlinks of the following names to the resulting VCF, TBI, and
MD5 files.

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.md5

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi.md5

For example, it might look as follows for the example from above:

output/
+-- bwa.mutect.P001-N1-DNA1-WES1-4
| `-- out
| |-- bwa.mutect.P001-N1-DNA1-WES1-4.vcf.gz
| |-- bwa.mutect.P001-N1-DNA1-WES1-4.vcf.gz.tbi
| |-- bwa.mutect.P001-N1-DNA1-WES1-4.vcf.gz.md5
| `-- bwa.mutect.P001-N1-DNA1-WES1-4.vcf.gz.tbi.md5
[...]

Generally, these files will be unfiltered, i.e., contain low-quality variants and also variants flagged as being non-somatic.

69

SNAPPY Pipeline Documentation, Release master

21.3 Global Configuration

• If the somatic variant caller MuTect is used, then the global settings static_data_config/dbsnp and
static_data_config/cosmic must be given as MuTect uses this in its algorithm.

• static_data_config/reference/path must be set appropriately

21.4 Default Configuration

The default configuration is as follows.

Default configuration somatic_variant_calling
step_config:
somatic_variant_calling:
tools: ['mutect', 'scalpel'] # REQUIRED, examples: 'mutect' and 'scalpel'.
path_ngs_mapping: ../ngs_mapping # REQUIRED
ignore_chroms: # patterns of chromosome names to ignore
- NC_007605 # herpes virus
- hs37d5 # GRCh37 decoy
- chrEBV # Eppstein-Barr Virus
- '*_decoy' # decoy contig
- 'HLA-*' # HLA genes
- 'GL000220.*' # Contig with problematic, repetitive DNA in GRCh37
Configuration for joint calling with samtools+bcftools.
bcftools_joint:
max_depth: 4000
max_indel_depth: 4000
window_length: 10000000
num_threads: 16

Configuration for joint calling with Platypus.
platypus_joint:
split_complex_mnvs: true # whether or not to split complex and MNV variants
num_threads: 16

VCF annotation databases are given as mapping from name to
{'file': '/path.vcf.gz',
'info_tag': 'VCF_TAG',
'description': 'VCF header description'}
Configuration for MuTect
mutect:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 3500000 # split input into windows of this size, each triggers␣

→˓a job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier

(continues on next page)

70 Chapter 21. Somatic Variant Calling

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

Configuration for MuTect 2
mutect2:
panel_of_normals: '' # Set path to panel of normals vcf if required
germline_resource: '' # Germline variants resource (same as panel of normals)
common_variants: '' # Common germline variants for contamination estimation
extra_arguments: [] # List additional Mutect2 arguments

Each additional argument xust be in the form:
"--<argument name> <argument value>"
For example, to filter reads prior to calling & to
add annotations to the output vcf:
- "--read-filter CigarContainsNoNOperator"
- "--annotation AssemblyComplexity BaseQuality"

Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

Configuration for Scalpel
scalpel:
path_target_regions: REQUIRED # REQUIRED

Configuration for strelka2
strelka2:
path_target_regions: "" # For exomes: include a bgzipped bed file with tabix␣

→˓index. That also triggers the --exome flag
gatk_hc_joint:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 10 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

(continues on next page)

21.4. Default Configuration 71

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

GATK HC--specific configuration
allow_seq_dict_incompatibility: false
annotations:
- BaseQualityRankSumTest
- FisherStrand
- GCContent
- HaplotypeScore
- HomopolymerRun
- MappingQualityRankSumTest
- MappingQualityZero
- QualByDepth
- ReadPosRankSumTest
- RMSMappingQuality
- DepthPerAlleleBySample
- Coverage
- ClippingRankSumTest
- DepthPerSampleHC

gatk_ug_joint:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 10 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging
GATK UG--specific configuration
downsample_to_coverage: 250
allow_seq_dict_incompatibility: false
annotations:
- BaseQualityRankSumTest
- FisherStrand
- GCContent
- HaplotypeScore
- HomopolymerRun
- MappingQualityRankSumTest
- MappingQualityZero
- QualByDepth
- ReadPosRankSumTest
- RMSMappingQuality
- DepthPerAlleleBySample
- Coverage
- ClippingRankSumTest
- DepthPerSampleHC

varscan_joint:

(continues on next page)

72 Chapter 21. Somatic Variant Calling

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 5000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
Configuration for samtools mpileup
max_depth: 4000
max_indel_depth: 4000
min_bq: 13
no_baq: True
Configuration for Varscan
min_coverage: 8
min_reads2: 2
min_avg_qual: 15
min_var_freq: 0.01
min_freq_for_hom: 0.75
p_value: 99e-02

21.5 Available Somatic Variant Callers

The following somatic variant callers are currently available

• "mutect"

• "scalpel"

21.6 Reports

Currently, no reports are generated.

21.5. Available Somatic Variant Callers 73

SNAPPY Pipeline Documentation, Release master

74 Chapter 21. Somatic Variant Calling

CHAPTER

TWENTYTWO

SOMATIC VARIANT CHECKING

Implementation of the germline somatic_variant_checking step

The somatic_variant_checking step takes as the input the results of the somatic_variant_annotation step. It
then executes various tools computing statistics on the result files and consistency checks with the pedigrees.

Note: Status: not implemented yet

22.1 Step Input

The variant calling step uses Snakemake sub workflows for using the result of the somatic_variant_annotation
step.

22.2 Step Output

Note: TODO

22.3 Global Configuration

Note: TODO

22.4 Default Configuration

The default configuration is as follows.

step_config:
somatic_variant_checking:
path_somatic_variant_calling: ../somatic_variant_calling # REQUIRED

75

SNAPPY Pipeline Documentation, Release master

22.5 Reports

Currently, no reports are generated.

76 Chapter 22. Somatic Variant Checking

CHAPTER

TWENTYTHREE

SOMATIC VARIANT EXPRESSION

Implementation of the somatic_variant_expression step

This step allows the combination of somatic variant calling results with their expression from RNA-seq data. This allows
for (1) extending a somatic VCF file with columns for the corresponding RNA-seq data giving depth of coverage and
minor allele fraction in the tumor RNA-eq and (2) for computing a p value for likelihood of observation by chance.

Note: Status: not implemented yet

23.1 Step Input

Note: TODO

23.2 Step Output

Note: TODO

23.3 Default Configuration

The default configuration is as follows.

step_config:
somatic_variant_expression:
path_ngs_mapping: ../ngs_mapping # REQUIRED
path_somatic_variant_calling: ../somatic_variant_calling # REQUIRED

77

SNAPPY Pipeline Documentation, Release master

78 Chapter 23. Somatic Variant Expression

CHAPTER

TWENTYFOUR

SOMATIC VARIANT FILTRATION

Implementation of the somatic_variant_filtration step

24.1 Default Configuration

The default configuration is as follows.

Default configuration variant_annotation
step_config:
somatic_variant_filtration:
path_somatic_variant_annotation: ../somatic_variant_annotation
path_ngs_mapping: ../ngs_mapping
tools_ngs_mapping: null
tools_somatic_variant_calling: null
filter_sets:
no_filter: no_filters # implicit, always defined
dkfz_only: '' # empty
dkfz_and_ebfilter:
ebfilter_threshold: 2.4

dkfz_and_ebfilter_and_oxog:
vaf_threshold: 0.08
coverage_threshold: 5

dkfz_and_oxog:
vaf_threshold: 0.08
coverage_threshold: 5

exon_lists: {}
genome_wide: null # implicit, always defined
ensembl74: path/to/ensembl47.bed
ignore_chroms: # patterns of chromosome names to ignore
- NC_007605 # herpes virus
- hs37d5 # GRCh37 decoy
- chrEBV # Eppstein-Barr Virus
- '*_decoy' # decoy contig
- 'HLA-*' # HLA genes
- 'GL000220.*' # Contig with problematic, repetitive DNA in GRCh37
eb_filter:
shuffle_seed: 1
panel_of_normals_size: 25
min_mapq: 20
min_baseq: 15

(continues on next page)

79

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

Parallelization configuration
window_length: 10000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

24.2 Important

Because the EB Filter step is so time consuming, the data going can be heavily prefiltered! (e.g. using Jannovar with
the offExome flag).

TODO: document filter, for now see the eb_filter wrapper!

24.3 Concept

All variants are annotated with the dkfz-bias-filter to remove sequencing and PCR artifacts. The variants annotatated
with EBFilter are variable, i.e. only variants that have the PASS flag set because we assume only those will be kept.

We borrowed the general workflow from variant_filtration, i.e. working with pre-defined filter sets and exon/region
lists.

24.4 Workflow

• 1. Do the filtering genome wide (this file needs to be there, always)

– dkfz-ebfilter-filterset1-genomewide

• 2. optionally, subset to regions defined in bed file, which return

– dkfz-ebfilter-filterset1-regions1

and so on for filterset1 to n

filterset1: filter bPcr, bSeq flags from dkfz-bias-filter

filterset2: additionally filter variants with EBscore < x, x is configurable

80 Chapter 24. Somatic Variant Filtration

CHAPTER

TWENTYFIVE

SOMATIC WGS CNV CALLING

Implementation of the somatic_wgs_cnv_calling step

The somatic_wgs_cnv_calling step takes as the input the results of the ngs_mapping step (aligned NGS reads)
and performs somatic CNV calling on them. The result are called CNVs in VCF format.

25.1 Step Input

The variant annotation step uses Snakemake sub workflows for using the result of the ngs_mapping and
somatic_variant_calling steps. Somatic (small) variant calling is required for b-allele based filtration. For the
somatic variant calling, one somatic (small) variant caller must be configured of which to use the results.

25.2 Step Output

For each tumor DNA NGS library with name lib_name/key lib_pk and each read mapper mapper that the library has
been aligned with, and the variant caller var_caller, the pipeline step will create a directory output/{mapper}.
{var_caller}.{lib_name}-{lib_pk}/out with symlinks of the following names to the resulting VCF, TBI, and
MD5 files.

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.md5

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi.md5

For example, it might look as follows for the example from above:

output/
+-- bwa.canvas.P001-T1-DNA1-WGS1-4
| `-- out
| |-- bwa.canvas.P001-T1-DNA1-WGS1-4.vcf.gz
| |-- bwa.canvas.P001-T1-DNA1-WGS1-4.vcf.gz.tbi
| |-- bwa.canvas.P001-T1-DNA1-WGS1-4.vcf.gz.md5
| `-- bwa.canvas.P001-T1-DNA1-WGS1-4.vcf.gz.tbi.md5
[...]

Generally, these files will be unfiltered, i.e., contain low-quality variants and also variants flagged as being non-somatic.

81

SNAPPY Pipeline Documentation, Release master

25.3 Global Configuration

None so far

25.4 Default Configuration

The default configuration is as follows.

25.5 Available Somatic CNV Callers

The following somatic CNV callers are currently available

• "canvas"

25.6 Reports

Currently, no reports are generated.

82 Chapter 25. Somatic WGS CNV Calling

CHAPTER

TWENTYSIX

SOMATIC WGS SV CALLING

Implementation of the somatic_wgs_sv_calling step

The somatic_wgs_sv_calling step takes as the input the results of the ngs_mapping step (aligned NGS reads) and
performs somatic SV calling on them. The result are called SVs in VCF format.

26.1 Step Input

The variant annotation step uses Snakemake sub workflows for using the result of the ngs_mapping step.

26.2 Step Output

For each tumor DNA NGS library with name lib_name/key lib_pk and each read mapper mapper that the library has
been aligned with, and the variant caller var_caller, the pipeline step will create a directory output/{mapper}.
{var_caller}.{lib_name}-{lib_pk}/out with symlinks of the following names to the resulting VCF, TBI, and
MD5 files.

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.md5

• {mapper}.{var_caller}.{lib_name}-{lib_pk}.vcf.gz.tbi.md5

For example, it might look as follows for the example from above:

output/
+-- bwa.manta.P001-T1-DNA1-WGS1-4
| `-- out
| |-- bwa.manta.P001-T1-DNA1-WGS1-4.vcf.gz
| |-- bwa.manta.P001-T1-DNA1-WGS1-4.vcf.gz.tbi
| |-- bwa.manta.P001-T1-DNA1-WGS1-4.vcf.gz.md5
| `-- bwa.manta.P001-T1-DNA1-WGS1-4.vcf.gz.tbi.md5
[...]

Generally, these files will be unfiltered, i.e., contain low-quality variants and also variants flagged as being non-somatic.

83

SNAPPY Pipeline Documentation, Release master

26.3 Global Configuration

• The static_data_config/reference/path has to be configured with the path to the reference FASTA file.

26.4 Default Configuration

The default configuration is as follows.

Default configuration somatic_wgs_sv_calling
step_config:
somatic_wgs_sv_calling:
path_ngs_mapping: ../ngs_mapping # REQUIRED
tools: [manta] # REQUIRED - available: 'delly2' and 'manta'
delly2:
path_exclude_tsv: null # optional
max_threads: 16

26.5 Available Somatic CNV Callers

The following somatic SV callers are currently available

• "manta"

• "delly2"

26.6 Reports

Currently, no reports are generated.

84 Chapter 26. Somatic WGS SV Calling

CHAPTER

TWENTYSEVEN

GERMLINE TARGETED SEQ. CNV CALLING

SV calling for targeted sequencing

Based on the output of ngs_mapping, call structural variants from depth of coverage, read pair, and split read signal.

85

SNAPPY Pipeline Documentation, Release master

86 Chapter 27. Germline Targeted Seq. CNV Calling

CHAPTER

TWENTYEIGHT

GERMLINE TARGETED SEQ. MEI CALLING

Implementation of the targeted_seq_mei_calling step

The targeted_seq_mei_calling step takes as the input the results of the ngs_mapping step (aligned reads in BAM
format) and performs germline mobile element insertion (MEI) identification. The result are VCF files with mobile
insertions.

28.1 Stability

This step is considered experimental, use it at your own discretion.

28.2 Step Input

MEI identification step uses Snakemake sub workflows for using the result of the ngs_mapping step.

28.3 Step Output

For all samples, MEI identification will be performed on the primary DNA NGS libraries separately for each configured
read mapper and mobile element identification tool. The name of the primary DNA NGS library will be used as an
identification token in the output file.

For each read mapper, MEI tool, and sample the following files will be generated:

• {mapper}.{mei_tool}.{lib_name}.vcf.gz

• {mapper}.{mei_tool}.{lib_name}.vcf.gz.md5

For example, it might look as follows for the example from above:

output/
+-- bwa.scramble.P001-N1-DNA1-WES1
| `-- out
| |-- bwa.scramble.P001-N1-DNA1-WES1.vcf.gz
| |-- bwa.scramble.P001-N1-DNA1-WES1.vcf.gz.md5
[...]

87

SNAPPY Pipeline Documentation, Release master

28.4 Global Configuration

Not applicable.

28.5 Default Configuration

The default configuration is as follows.

Default configuration
step_config:
targeted_seq_mei_calling:
Path to the ngs_mapping step
path_ngs_mapping: ../ngs_mapping

tools: [scramble] # REQUIRED - available: 'scramble'

scramble:
blast_ref: null # REQUIRED: path to FASTA reference with BLAST DB (`makeblastdb`)
mei_refs: null # OPTIONAL: MEI reference file (FASTA), if none provided will use␣

→˓default.
n_cluster: 5 # OPTIONAL: minimum cluster size, depth of soft-clipped reads.
mei_score: 50 # OPTIONAL: minimum MEI alignment score.
indel_score: 80 # OPTIONAL: minimum INDEL alignment score.
mei_polya_frac: 0.75 # OPTIONAL: minimum fraction of clipped length for calling␣

→˓polyA tail.

28.6 Available MEI Identification Tools

The following germline MEI identification tool is currently available:

• "Scramble"

28.7 Reports

Not applicable.

28.8 Parallel Execution

Not available.

88 Chapter 28. Germline Targeted Seq. MEI Calling

CHAPTER

TWENTYNINE

GERMLINE REPEAT EXPANSION ANALYSIS

Implementation of the repeat_analysis step

The repeat_analysis step takes as the input the results of the ngs_mapping step (aligned reads in BAM format)
and performs repeat expansion analysis. The result are variant files (VCF) with the repeat expansions definitions, and
associated annotations (JSON).

29.1 Stability

This step is considered experimental, use it at your own discretion.

29.2 Step Input

The repeat analysis step uses Snakemake sub workflows for using the result of the ngs_mapping step.

29.3 Step Output

For all samples, repeat analysis will be performed on the primary DNA NGS libraries separately for each configured
read mapper and repeat analysis tool. The name of the primary DNA NGS library will be used as an identification
token in the output file.

For each read mapper, repeat analysis tool, and sample, the following files will be generated:

• {mapper}.{repeat_tool}.{lib_name}.vcf

• {mapper}.{repeat_tool}.{lib_name}.vcf.md5

• {mapper}.{repeat_tool}_annotated.{lib_name}.json

• {mapper}.{repeat_tool}_annotated.{lib_name}.json.md5

For example, it might look as follows for the example from above:

output/
+-- bwa.expansionhunter.P001-N1-DNA1-WES1
| `-- out
| |-- bwa.expansionhunter.P001-N1-DNA1-WES1.vcf
| |-- bwa.expansionhunter.P001-N1-DNA1-WES1.vcf.md5
+-- bwa.expansionhunter_annotated.P001-N1-DNA1-WES1
| `-- out

(continues on next page)

89

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

| |-- bwa.expansionhunter_annotated.P001-N1-DNA1-WES1.json
| |-- bwa.expansionhunter_annotated.P001-N1-DNA1-WES1.json.md5
[...]

29.4 Global Configuration

Not applicable.

29.5 Default Configuration

The default configuration is as follows:

Default configuration repeat_expansion
step_config:
repeat_expansion:
Repeat expansions definitions - used in ExpansionHunter call
repeat_catalog: REQUIRED
Repeat expansions annotations, e.g., normality range - custom file
repeat_annotation: REQUIRED
Path to the ngs_mapping step
path_ngs_mapping: ../ngs_mapping

29.6 Available Repeat Analysis Tools

The following germline repeat analysis tool is currently available:

• "ExpansionHunter"

29.7 Parallel Execution

Not available.

90 Chapter 29. Germline Repeat Expansion Analysis

CHAPTER

THIRTY

T CELL CRG REPORT

Implementation of the tcell_crg_report step

This step collects all of the calls and information gathered for the BIH T cell CRG and generates an Excel report for
each patient.

Note: Status: not implemented yet

30.1 Step Input

The BIH T cell CRG report generator uses the following as input:

• somatic_variant_annotation

• somatic_epitope_prediction

• somatic_variant_checking

• somatic_ngs_sanity_checks

30.2 Step Output

Note: TODO

30.3 Default Configuration

The default configuration is as follows.

Default configuration tcell_crg_report
step_config:
tcell_crg_report:
path_somatic_variant_annotation: ../somatic_variant_annotation # REQUIRED

91

SNAPPY Pipeline Documentation, Release master

30.4 Available Gene Fusion Callers

• cnvkit

92 Chapter 30. T cell CRG Report

CHAPTER

THIRTYONE

GERMLINE VARIANT ANNOTATION

Implementation of the variant_annotation step

The variant_annotation step takes as the input the results of the variant_calling step (called germline variants
in vcf.gz format) and annotates the variants, e.g., using VEP.

31.1 Stability

TBD

31.2 Step Input

The variant annotation step uses Snakemake sub workflows for using the result of the variant_calling step.

31.3 Step Output

TBD

31.4 Global Configuration

TBD

31.5 Default Configuration

The default configuration is as follows.

Default configuration variant_annotation
step_config:
variant_annotation:
path_variant_calling: ../variant_calling
tools:
- vep

vep:
We will always run VEP in cache mode. You have to provide the directory to the

(continues on next page)

93

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

cache to use (VEP would be ``~/.vep``).
cache_dir: null # OPTIONAL
The cache version to use. gnomAD v2 used 85, gnomAD v3.1 uses 101.
cache_version: "85"
The assembly to use. gnomAD v2 used "GRCh37", gnomAD v3.1 uses "GRCh38".
assembly: "GRCh37"
The flag selecting the transcripts. One of "gencode_basic", "refseq", and

→˓"merged".
tx_flag: "gencode_basic"
Number of threads to use with forking, set to 0 to disable forking.
num_threads: 16
Additional flags.
more_flags: "--af_gnomade --af_gnomadg"
The --buffer_size parameter
buffer_size: 100000

31.6 Available Variant Annotators

The following variant annotator is currently available:

• "vep" : See the software documentation for more details

31.7 Reports

N/A

94 Chapter 31. Germline Variant Annotation

https://www.ensembl.org/info/docs/tools/vep/script/index.html

CHAPTER

THIRTYTWO

GERMLINE VARIANT CALLING

Implementation of the variant_calling step

The variant_calling` step takes the output of the ``ngs_mapping step and performs small variant
calling on the read alignments. The output are variant calls in VCF (and optionally gVCF) files and quality control
statistics on these data.

32.1 Properties

overall stability

stable

applicable to

germline variant calling

generally applicable to

short read variant calling

32.2 Step Input

BAM files from the ngs_mapping step.

32.3 Step Output

Creates one output directory for each read mapper (from ngs_mapping), each variant caller, and each pedigree from
the germline sample sheet.

Primary Output

• output/{mapper}.{caller}.{index_library}/out/{mapper}.{caller}.{index_library}.vcf.
gz

Additional Output

The callers implementing a gVCF workflow (currently only gatk4_hc_gvcf) also create one output gVCF file for the
pedigree.

• output/{mapper}.{caller}.{index_library}/out/{mapper}.{caller}.{index_library}.g.
vcf.gz

95

SNAPPY Pipeline Documentation, Release master

Further, each VCF and gVCF file gets an appropriate TBI index file {vcf_file}.tbi and each output is gets an
appropriate MD5 checksum file {file}.md5.

32.4 Global Configuration

• If GATK HaplotypeCaller or GATK UnifiedGenotyper are activated then static_data_config/dbsnp/path
must be properly configured

• static_data_config/reference/path must be set appropriately

32.5 Default Configuration

The default configuration is as follows.

Default configuration variant_calling
step_config:
variant_calling:
Common configuration
path_ngs_mapping: ../ngs_mapping # REQUIRED

Report generation
baf_file_generation:
enabled: true
min_dp: 10 # minimal DP of variant, must be >=1

bcftools_stats:
enabled: true

jannovar_stats:
enabled: true
path_ser: REQUIRED # REQUIRED

bcftools_roh:
enabled: true
path_targets: null # REQUIRED; optional
path_af_file: null # REQUIRED
ignore_homref: false
skip_indels: false
rec_rate: 1e-8

Variant calling tools and their configuration
#
Common configuration
tools: ['gatk4_hc_gvcf'] # REQUIRED
ignore_chroms:
- '^NC_007605$' # herpes virus
- '^hs37d5$' # GRCh37 decoy
- '^chrEBV$' # Eppstein-Barr Virus
- '_decoy$' # decoy contig
- '^HLA-' # HLA genes

Variant caller specific configuration
bcftools_call:

(continues on next page)

96 Chapter 32. Germline Variant Calling

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

max_depth: 250
max_indel_depth: 250
window_length: 10000000
num_threads: 16

gatk3_hc:
num_threads: 16
window_length: 10000000
allow_seq_dict_incompatibility: false

gatk3_ug:
num_threads: 16
window_length: 10000000
allow_seq_dict_incompatibility: false
downsample_to_coverage: 250

gatk4_hc_joint:
window_length: 10000000
num_threads: 16
allow_seq_dict_incompatibility: false

gatk4_hc_gvcf:
window_length: 10000000
num_threads: 16
allow_seq_dict_incompatibility: false

32.6 Variant Callers

The following germline variant callers are currently available.

gatk4_hc_gvcf

Variant calling with GATK v4 HaplotypeCaller using the gVCF workflow consisting of variant discov-
ery with HaplotypeCaller, merging of the gVCF files withing each pedigree with CombineGVCFs and
genotyping with GenotypeGVCFs.

This is the mainly used variant caller and the only one enabled by default.

The reason is this being the main advertised run mode by the GATK team and this workflow enables
physical phasing information in the output VCF files.

gatk4_hc_joint

Variant calling with the GATK v4 HaplotypeCaller using joint calling with direct VCF generation.

This variant caller is provided as a fallback to explore problems with de novo variant calls that may have
been introduced by the gVCF workflow.

Disabled by default.

gatk3_hc

Joint calling with GATK v3 HaplotypeCaller.

This caller is provided for historical reasons as earlier versions of SNAPPY pipeline were based on this
workflow.

Disabled by default.

gatk3_ug

32.6. Variant Callers 97

SNAPPY Pipeline Documentation, Release master

Joint calling with GATK v3 UnifiedGenotyper.

This caller is provided for historical reasons and to provide a vote in creating consensus sets of variant
calls.

bcftools_call

Variant calling with bcftools mpileup | bcftools call.

This caller is provided for establishing baseline variant calls in benchmark situations. BCFtools allows for
fast and efficient variant calling at the cost of some sensitivity and specificity.

Disabled by default.

32.7 Reports

jannovar_stats

Create statistics on variants using jannovar statsistics for each pedigree.

report/jannovar_stats/{mapper}.{caller}.{index_library}.{donor_library}.txt

bcftools_stats

Create statistics on variants using bcftools stats for each donor in each pedigree for each mapper and
caller.

report/bcftools_stats/{mapper}.{caller}.{index_library}.{donor_library}.txt

baf_file_generation

Create one UCSC BigWig file for each individual in each pedigree for each mapper and caller with B-allele
fraction. These files can be used for to visually confirm structural variants or runs of homozygosity.

report/baf/{mapper}.{caller}.{index_library}.{donor_library}.bw

roh_calling

Perform run-of-homozygosity calling with bcftools roh.

32.8 Log Files

For each variant caller and report generator, the following log files are created into the log directory.

{file}.conda_info.txt

Output of conda info of the executing conda environment.

{file}.conda_list.txt

Output of conda list of the executing conda environment with list of the full package list and exact
versions.

{file}.log

Log output of the execution.

{file}.wrapper.py

The actual Snakemake wrapper file with all input / output / parameter values.

98 Chapter 32. Germline Variant Calling

SNAPPY Pipeline Documentation, Release master

32.9 Implementation Notes

• All variant callers are parallelized using GNU parallel on genome-wide windows generated by GATK v4
PreprocessIntervals.

• Each output file has an accompanying MD5 sum.

32.10 Example Output

Given a pedigree with index index and two more donors mother and father, the following files would be created
into output/ (each VCF file has a .tbi file and overall each file has a .md5 file). In this case, the read mapper is bwa
and the variant caller is gatk4_hc_gvcf.

` bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
index-N1-DNA1-WES1.baf_file_generation_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.
baf_file_generation_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.baf_file_generation_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
index-N1-DNA1-WES1.baf_file_generation_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.baf_file_generation_run.
wrapper.py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
index-N1-DNA1-WES1.bcftools_stats_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.
bcftools_stats_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.bcftools_stats_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
index-N1-DNA1-WES1.bcftools_stats_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.index-N1-DNA1-WES1.bcftools_stats_run.wrapper.
py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
father-N1-DNA1-WES1.baf_file_generation_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.
baf_file_generation_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.baf_file_generation_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
father-N1-DNA1-WES1.baf_file_generation_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.baf_file_generation_run.
wrapper.py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
father-N1-DNA1-WES1.bcftools_stats_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.
bcftools_stats_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.bcftools_stats_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
father-N1-DNA1-WES1.bcftools_stats_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.bcftools_stats_run.wrapper.
py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
mother-N1-DNA1-WES1.baf_file_generation_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.
baf_file_generation_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.baf_file_generation_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
mother-N1-DNA1-WES1.baf_file_generation_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.baf_file_generation_run.

32.9. Implementation Notes 99

SNAPPY Pipeline Documentation, Release master

wrapper.py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
mother-N1-DNA1-WES1.bcftools_stats_run.conda_info.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.
bcftools_stats_run.conda_list.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.bcftools_stats_run.environment.
yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
mother-N1-DNA1-WES1.bcftools_stats_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.bcftools_stats_run.wrapper.
py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
gatk4_hc_gvcf_genotype.conda_info.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.gatk4_hc_gvcf_genotype.conda_list.txt
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
gatk4_hc_gvcf_genotype.environment.yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.gatk4_hc_gvcf_genotype.log bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.gatk4_hc_gvcf_genotype.
wrapper.py bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
jannovar_stats_run.conda_info.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.jannovar_stats_run.conda_list.txt bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.jannovar_stats_run.
environment.yaml bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/log/bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1.jannovar_stats_run.log bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
log/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.jannovar_stats_run.wrapper.py bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1/out/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.g.vcf.gz
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/out/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.vcf.gz
bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/report/baf/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.
index-N1-DNA1-WES1.baf.bw bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/report/baf/bwa.
gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.baf.bw bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1/report/baf/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.mother-N1-DNA1-WES1.
baf.bw bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/report/bcftools_stats/bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1.index-N1-DNA1-WES1.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/
report/bcftools_stats/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.father-N1-DNA1-WES1.
txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/report/bcftools_stats/bwa.gatk4_hc_gvcf.
index-N1-DNA1-WES1.mother-N1-DNA1-WES1.txt bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1/report/
jannovar_stats/bwa.gatk4_hc_gvcf.index-N1-DNA1-WES1.txt `

100 Chapter 32. Germline Variant Calling

CHAPTER

THIRTYTHREE

GERMLINE VARIANT SANITY CHECKING

Implementation of the germline variant_checking step

The variant_checking step takes as the input the results of the variant_annotation step. It then executes various
tools computing statistics on the result files and consistency checks with the pedigrees.

33.1 Step Input

The variant calling step uses Snakemake sub workflows for using the result of the variant_annotation step.

33.2 Step Output

Note: TODO

33.3 Global Configuration

Note: TODO

33.4 Default Configuration

The default configuration is as follows.

step_config:
variant_checking:
tools_ngs_mapping: [] # optional, copied from ngs mapping config
tools_variant_calling: [] # optional, copied from variant calling config
path_variant_calling: ../variant_calling # REQUIRED
tools: ['peddy'] # REQUIRED - available: 'peddy'

101

SNAPPY Pipeline Documentation, Release master

33.5 Available Variant Checkers

The following variant checkers integrated:

• "bcftools_stats" – call bcftools stats for various statistics

• "peddy" – check variants against a PED file

33.6 Reports

Currently, no reports are generated.

102 Chapter 33. Germline Variant Sanity Checking

CHAPTER

THIRTYFOUR

GERMLINE VARIANT DE NOVO FILTRATION

Implementation of the variant_denovo_filtration step.

This step implements filtration of variants to de novo variants. This step was introduced for the “Ionizing Radiation”
study in ca. 2016 and the aim here is to get a set of high-confidence de novo sequence variants (both SNVs and indels,
although the latter turned out to be less reliable). Further, if the variants are phased, assigning to paternal or maternal
allele can be attempted. This allows to study paternal age effects.

Note that in contrast to variant_calling and variant_annotation but in consistency with variant_phasing,
the central individual here are children and not the index of pedigrees.

34.1 Step Input

The step reads in the variant call files from one of the following steps:

• variant_calling

• variant_annotation

• variant_phasing

Of course, assignment to parental allele can only be performed on phased variants. Further, only filtering annotated
variants is really useful as one wants to excludes variants in problematic genomic regions.

34.2 Step Output

For all children with both parents present, variant de novo annotation will be attempted on the primary DNA NGS
library of that child. The name of this library will be used as the identification token in the output file and file name.
For each read mapper, variant caller, and pedigree, the following files will be generated:

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos.{lib_name}.vcf.gz.tbi

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos.{lib_name}.vcf.gz

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos.{lib_name}.vcf.gz.md5

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos.{lib_name}.vcf.gz.tbi.md5

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.vcf.gz

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.vcf.gz.tbi

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.vcf.gz.md5

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.vcf.gz.tbi.md5

103

SNAPPY Pipeline Documentation, Release master

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.summary.txt

• {mapper}.{var_caller}.{annotation}.{phasing}.de_novos_hard.{lib_name}.summary.txt.
md5

The the annotation and phasing will only be persent when the input is read from the variant_annotation or
variant_phasing steps, respectively.

For example, it might look as follows for the example from above:

output/
+-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1
| `-- out
| |-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1.vcf.gz
| |-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1.vcf.gz.md5
| |-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1.vcf.gz.tbi
| |-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1.vcf.gz.tbi.md5
| |-- bwa.gatk3_hc.de_novos.P001-N1-DNA1-WES1.vcf.gz
| |-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.vcf.gz.md5
| |-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.vcf.gz.tbi
| |-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.vcf.gz.tbi.md5
| |-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.vcf.gz
| |-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.summary.txt
| `-- bwa.gatk3_hc.de_novos_hard.P001-N1-DNA1-WES1.summary.txt.md5
[...]

34.3 Global Configuration

No global configuration is in use.

34.4 Default Configuration

The default configuration is as follows.

step_config:
variant_denovo_filtration:
One of the following must be given!
path_variant_phasing: ''
path_variant_annotation: ''
path_variant_calling: ''
path_ngs_mapping: ../ngs_mapping
tools_ngs_mapping: null # defaults to ngs_mapping tool
tools_variant_calling: null # defaults to variant_annotation tool
info_key_reliable_regions: [] # optional INFO keys with reliable regions
info_key_unreliable_regions: [] # optional INFO keys with unreliable regions
params_besenbacher: # parameters for Besenbacher quality filter
min_gq: 50
min_dp: 10
max_dp: 120
min_ab: 0.20
max_ab: 0.9

(continues on next page)

104 Chapter 34. Germline Variant De Novo Filtration

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

max_ad2: 1
bad_region_expressions: []
e.g.,
- 'UCSC_CRG_MAPABILITY36 == 1'
- 'UCSC_SIMPLE_REPEAT == 1'
collect_msdn: True # whether or not to collect MSDN (requires GATK␣

→˓HC+UG)

34.5 Reports

Currently, no reports are generated.

34.5. Reports 105

SNAPPY Pipeline Documentation, Release master

106 Chapter 34. Germline Variant De Novo Filtration

CHAPTER

THIRTYFIVE

GERMLINE VARIANT PHASING

Implementation of the germline variant_phasing step

This step takes the result of the variant_annotation step and performs phasing of the variants using the GATK
tools. Note that there are some issues with the GATK tools implementing this step:

• The result of the PhaseByTransmission tool changes the genotype of some variants which is problematic when
trying to phase de novo variants.

• The read backed phasing is also not 100% reliable at the moment.

Thus, the functionality of the tools is made available by this pipeline step but it is not as fully integrated as it could
because it is unclear how useful this is for clinical studies. Also, so far only the GATK variant caller results can be
phased.

Also note that this step generates one output file for each child in a pedigree where both parents have been sequenced.

35.1 Step Input

The variant annotation step uses the output of the following CUBI pipeline steps:

• ngs_mapping

• variant_annotation

35.2 Step Output

For each input VCF file (i.e., for each mapper and pedigree), a directory output/{mapper}.{caller}.{phaser}.
{index_ngs_library}/out will be created with the following output files.

The {phaser} placeholder can take the values gatk_phase_by_transmission, gatk_read_backed_phasing, and
gatk_phased_both (for the latter, first phasing by transmission and then read backed phasing is performed).

107

SNAPPY Pipeline Documentation, Release master

35.3 Global Configuration

• static_data_config/reference/path must be set appropriately

35.4 Default Configuration

The default configuration is as follows.

Default configuration wgs_sv_filtration
step_config:
variant_phasing:
path_ngs_mapping: ../ngs_mapping
path_variant_annotation: ../variant_annotation
tools_ngs_mapping: [] # expected tools for ngs mapping
tools_variant_calling: [] # expected tools for variant calling
phasings:
- gatk_phasing_both
ignore_chroms: # patterns of chromosome names to ignore
- NC_007605 # herpes virus
- hs37d5 # GRCh37 decoy
- chrEBV # Eppstein-Barr Virus
- '*_decoy' # decoy contig
- 'HLA-*' # HLA genes
gatk_read_backed_phasing:
phase_quality_threshold: 20.0 # quality threshold for phasing
window_length: 5000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 1000 # number of windows to process in parallel
use_profil: true # use Snakemake profile for parallel processing
restart_times: 0 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 10 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

gatk_phase_by_transmission:
de_novo_prior: 1e-8 # default, use 1e-6 when interested in phasing de novos

108 Chapter 35. Germline Variant Phasing

SNAPPY Pipeline Documentation, Release master

35.5 Reports

Currently, no reports are generated.

35.5. Reports 109

SNAPPY Pipeline Documentation, Release master

110 Chapter 35. Germline Variant Phasing

CHAPTER

THIRTYSIX

GERMLINE VARIANT FILTRATION

Implementation of the variant_filtration step

This step takes annotated variants as the input from variant_annotation and performs various filtration and post-
processing operations:

1. filter to high-confidence variants

1. apply quality filter sets

2. filter for consistency between different callers

2. filter to compatible mode of inheritance

3. filter by population/cohort frequency, remove polymorphisms

4. filter by region

5. filter by scores (e.g., conservation)

6. filter for het. comp. inheritance or keep all

#

1
stringent
loose

2 # $qual.denovo # $qual.dom # $qual.rec_hom

3 # $qual.denovo.denov_freq # $qual.dom.dom_freq # $qual.dom.rec_freq # $qual.rec_hom.rec_freq

4 # $qual.denovo.denov_freq.$region # $qual.dom.dom_freq.$region # $qual.dom.rec_freq.$region
$qual.rec_hom.rec_freq.$region

5 # $qual.denovo.denov_freq.$region.$scores # $qual.dom.dom_freq.$region.$scores
$qual.dom.rec_freq.$region.$scores # $qual.rec_hom.rec_freq.$region.$scores

6 # $qual.denovo.denov_freq.$region.keep_all # $qual.dom.dom_freq.$region.keep_all
$qual.dom.rec_freq.$region.$scores.same_gene # $qual.dom.rec_freq.$region.$scores.same_tad #
$qual.dom.rec_freq.$region.$scores.itv_500bp # $qual.rec_hom.rec_freq.$region.keep_all

111

SNAPPY Pipeline Documentation, Release master

36.1 Filtration Steps

The combinations of the filters is given in the configuration setting filter_combinations as dot-separated values,
e.g., AA.BB.CC.

36.2 Step Input

TODO

36.3 Step Output

TODO

36.4 Global Configuration

TODO

36.5 Default Configuration

The default configuration is as follows.

step_config:
variant_filtration:
path_variant_annotation: ../variant_annotation
tools_ngs_mapping: null # defaults to ngs_mapping tool
tools_variant_calling: null # defaults to variant_annotation tool
thresholds: # quality filter sets, "keep_all" implicitely defined
conservative:
min_gq: 40
min_dp_het: 10
min_dp_hom: 5
include_expressions:
- 'MEDGEN_COHORT_INCONSISTENT_AC=0'

relaxed:
min_gq: 20
min_dp_het: 6
min_dp_hom: 3
include_expressions:
- 'MEDGEN_COHORT_INCONSISTENT_AC=0'

frequencies: # values to use for frequency filtration
af_dominant: 0.001 # AF (allele frequency) values
af_recessive: 0.01
ac_dominant: 3 # AC (allele count in gnomAD) values

region_beds: # regions to filter to, "whole_genome" implicitely defined
all_tads: /fast/projects/medgen_genomes/static_data/GRCh37/hESC_hg19_allTads.bed
all_genes: /fast/projects/medgen_genomes/static_data/GRCh37/gene_bed/ENSEMBL_v75.

→˓bed.gz (continues on next page)

112 Chapter 36. Germline Variant Filtration

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

limb_tads: /fast/projects/medgen_genomes/static_data/GRCh37/newlimb_tads.bed
lifted_enhancers: /fast/projects/medgen_genomes/static_data/GRCh37/all_but_onlyMB.

→˓bed
vista_enhancers: /fast/projects/medgen_genomes/static_data/GRCh37/vista_limb_

→˓enhancers.bed
score_thresholds: # thresholds on scores to filter to, "all_scores"␣

→˓implictely defined
coding:
require_coding: true
require_gerpp_gt2: false
min_cadd: null

conservative: # unused; TODO: rename?
require_coding: false
require_gerpp_gt2: false
min_cadd: 0

conserved: # TODO: rename?
require_coding: false
require_gerpp_gt2: true
min_cadd: null

filter_combinations: # dot-separated {thresholds}.{inherit}.{freq}.{region}.{score}.
→˓{het_comp}

- conservative.de_novo.dominant_freq.lifted_enhancers.all_scores.passthrough
- conservative.de_novo.dominant_freq.lifted_enhancers.conserved.passthrough
- conservative.de_novo.dominant_freq.limb_tads.all_scores.passthrough
- conservative.de_novo.dominant_freq.limb_tads.coding.passthrough
- conservative.de_novo.dominant_freq.limb_tads.conserved.passthrough
- conservative.de_novo.dominant_freq.vista_enhancers.all_scores.passthrough
- conservative.de_novo.dominant_freq.vista_enhancers.conserved.passthrough
- conservative.de_novo.dominant_freq.whole_genome.all_scores.passthrough
- conservative.de_novo.dominant_freq.whole_genome.coding.passthrough
- conservative.de_novo.dominant_freq.whole_genome.conserved.passthrough
- conservative.dominant.dominant_freq.lifted_enhancers.all_scores.passthrough
- conservative.dominant.dominant_freq.lifted_enhancers.conserved.passthrough
- conservative.dominant.dominant_freq.limb_tads.all_scores.passthrough
- conservative.dominant.dominant_freq.limb_tads.coding.passthrough
- conservative.dominant.dominant_freq.limb_tads.conserved.passthrough
- conservative.dominant.dominant_freq.vista_enhancers.all_scores.passthrough
- conservative.dominant.dominant_freq.vista_enhancers.conserved.passthrough
- conservative.dominant.dominant_freq.whole_genome.all_scores.passthrough
- conservative.dominant.dominant_freq.whole_genome.coding.passthrough
- conservative.dominant.dominant_freq.whole_genome.conserved.passthrough
- conservative.dominant.recessive_freq.lifted_enhancers.all_scores.intervals500
- conservative.dominant.recessive_freq.lifted_enhancers.conserved.intervals500
- conservative.dominant.recessive_freq.lifted_enhancers.conserved.tads
- conservative.dominant.recessive_freq.limb_tads.all_scores.intervals500
- conservative.dominant.recessive_freq.limb_tads.coding.gene
- conservative.dominant.recessive_freq.limb_tads.conserved.intervals500
- conservative.dominant.recessive_freq.limb_tads.conserved.tads
- conservative.dominant.recessive_freq.vista_enhancers.all_scores.intervals500
- conservative.dominant.recessive_freq.vista_enhancers.conserved.intervals500
- conservative.dominant.recessive_freq.vista_enhancers.conserved.tads
- conservative.dominant.recessive_freq.whole_genome.all_scores.intervals500

(continues on next page)

36.5. Default Configuration 113

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

- conservative.dominant.recessive_freq.whole_genome.coding.gene
- conservative.dominant.recessive_freq.whole_genome.conserved.intervals500
- conservative.dominant.recessive_freq.whole_genome.conserved.tads
- conservative.recessive_hom.recessive_freq.lifted_enhancers.all_scores.passthrough
- conservative.recessive_hom.recessive_freq.lifted_enhancers.conserved.passthrough
- conservative.recessive_hom.recessive_freq.limb_tads.all_scores.passthrough
- conservative.recessive_hom.recessive_freq.limb_tads.coding.passthrough
- conservative.recessive_hom.recessive_freq.limb_tads.conserved.passthrough
- conservative.recessive_hom.recessive_freq.vista_enhancers.all_scores.passthrough
- conservative.recessive_hom.recessive_freq.vista_enhancers.conserved.passthrough
- conservative.recessive_hom.recessive_freq.whole_genome.all_scores.passthrough
- conservative.recessive_hom.recessive_freq.whole_genome.coding.passthrough
- conservative.recessive_hom.recessive_freq.whole_genome.conserved.passthrough
The following are for input to variant_combination.
- conservative.dominant.recessive_freq.whole_genome.coding.passthrough
- conservative.dominant.recessive_freq.whole_genome.conserved.passthrough

36.6 Reports

Currently, no reports are generated.

114 Chapter 36. Germline Variant Filtration

CHAPTER

THIRTYSEVEN

GERMLINE SV CALLING

Implementation of the sv_calling_wgs step

115

SNAPPY Pipeline Documentation, Release master

116 Chapter 37. Germline SV Calling

CHAPTER

THIRTYEIGHT

GERMLINE WGS SV FILTRATION

117

SNAPPY Pipeline Documentation, Release master

118 Chapter 38. Germline WGS SV Filtration

CHAPTER

THIRTYNINE

DEVELOPER’S INTRODUCTION

Note: Before reading this chapter, you should

• have knowledge from the user’s perspective of CUBI pipeline (start a Usage).

After reading this chapter, you should

• know about the Python programming techniques required from a CUBI pipeline developer

• have an overview of the components of a pipeline step

• know that cubi-snake only serves as a shortcut to the snakemake executable.

The target audience of this part of the documentation is developers who want to change or extend the pipeline. The aim
is to give a good overview of the architecture of the pipeline system and dissect some typical existing pipeline steps for
educational purposes. Most parts of the system follow a consistent programming and architecture style that should be
followed to ease the understanding of the system.

If you are a proficient Python programmer then you should not have a too hard time to get started. If your Python karate
is less strong (e.g., if you are a Bioinformatician coming from the “bio” and not the “informtician” side), take a deep
breath and brace yourself, you will learn something here. Before we start, here is the Zen of Python as a reminder:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.

(continues on next page)

119

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

39.1 Prerequisites – Your Tool Belt

The CUBI pipeline system is implemented using Python 3 (>=3.4 at the moment) and built upon the wonderful Snake-
make (>=3.10 at the moment). For distributed, parallel execution, the pipeline is tailored towards execution with SGE
Grid Engine. In order to follow this developer’s documentation comfortably, you should be familiar with all three
systems:

• Python 3

• Snakemake

• Grid Engine (or similar cluster job queueing system).

You should be familiar with the CUBI pipeline from the user perspective already.

Also, understanding in the following techniques will come in handy:

• Snakemake as a rule-based language for describing workflows,

• object oriented programming,

• Python generators (via yield, use of yield from),

• Python decorators,

• Python itertools package and built-ins such as zip/map

• Exception handlng

• JSON, JSON schema,

• scope, lambdas, and closures in Python,

• realize that classes are objects themselves and callable (their constructor),

• the snakemake.io.expand() helper function

• text manipulation using str.format, textwrap.dedent, str.lstrip,

• understanding in common Python standard library code such as os[.path], collections.OrderedDict,

• the recently added Snakemake unpack() keyword,

• the concept of mixin classes.

The following are handy references about using Python effectively:

• The Hitchhiker’s Guide to Python.

• Slatkin, Brett: Effective Python: 59 Specific Ways to Write Better Python

120 Chapter 39. Developer’s Introduction

https://snakemake.bitbucket.org
https://snakemake.bitbucket.org
http://docs.python-guide.org/en/latest/

SNAPPY Pipeline Documentation, Release master

39.2 Anatomy of a Typical Pipeline Step

Each pipeline step is implemented as a Snakemake workflow. For each step, there is a module sub directory below
snappy_pipeline.workflows containing:

• __init__.py with classes that actually implement the workflow

• Snakefile that contains the Snakemake rule definitions but usually just hooks in calls to the actual implemen-
tation code from __init__.py.

Usually, you define a BaseStep sub class in your Python code (__init__.py) that is then instantiated in your
Snakefile. The current configuration is passed into the constructor of this class and it then “takes over” and applies
default setting, generating cluster resource settings, etc. Then, you pass the result of method calls to your BaseStep
instance as the values for the input:, output:, etc. sections of your Snakefile.

Warning: By convention your new Workflow step should be instantiated as wf = StepClass(...) in the
Snakefile during object setup. Otherwise tools including cubi-tk might not be able to detect and parse your
step. See existing workflow Snakefile for reference.

The BaseStep sub class itself uses BaseStepPart sub classes for the implementation of the individual parts. One
part might be linking in FASTQ files from the raw input directory or linking from the work/ to the output/ directory.
Another part might be the somatic variant calling using mutect or WGS SV calling using Delly2.

Each of the parts might be split into different actions if the implementing tools need their own more or less complex
“workflow” themselves. An example for such a tool is Delly2 where first variant calling is performed for each sample,
then the resulting site list is merged and used for genotpying is all samples individually. Finally, the wohle cohort’s
genotypes are merged and for each sample, only the variants that have been observed in it will be executed. If the tools
can just be executed in one action, this action should be called "run".

This approach has the advantage that most complex things happen in Python code for which tools for testing, (some)
static code analysis, documentation, and style checking exist. In the Python files, we can use the whole Python tooling
ecosystem whereas in the Snakemake files, tools would choke on the first rule keyword. In short, the Snakefile only
serves as the entry point for your Python code.

39.3 Anatomy of the cubi-snake Executable

CUBI pipeline runs are invoked with the cubi-snake executable that internally calls Snakemake with sensible defaults
for either local execution or execution on via SGE on an HPC cluster. It serves as a convenience wrapper that reads the
current pipeline step from the current working directories config.yaml file (where available, otherwise you have to
use the --step argument).

Some parameters are handed through directly to Snakemake, others are serve as macros that add more complex param-
eters with best pratice values or print the configuration setting.

This sounds like an aweful amount of “magic” but is quite simple and transparent, really. The generally useful
snakemake parameters are also available to cubi-snake (or should be added, please create a ticket). Also, snakemake
is invoked through the command line interface and a command line to copy and paste is printed at the beginning of
every cubi-snake invocation.

39.2. Anatomy of a Typical Pipeline Step 121

SNAPPY Pipeline Documentation, Release master

122 Chapter 39. Developer’s Introduction

CHAPTER

FORTY

SOMATIC VARIANT CALLING DISSECTION

Note: Before reading this chapter, you should have

• have knowledge from the user’s perspective of CUBI pipeline (start a Usage)

• read chapter Developer’s Introduction.

After reading this chapter, you should

• understand the BaseStep and BaseStepPart classes and how to subclass them and override the different func-
tions

• understand how the objects of these classes are tied into the Snakefile of each pipeline step

• understand how to create and use Snakemake wrappers for tools

40.1 Pipeline Step File Structure

Generally, all pipeline steps go into a sub module of snappy_pipeline.workflows (thus, a sub directory). In this
chapter, we look at the somatic_variant_calling pipeline step. This step has the following structure on the file
system:

somatic_variant_calling/
|-- __init__.py
`-- Snakefile

As you can see, it is a Python module (as it contains an __init__.py file) that also contains non-Python files (here
Snakefile). The directory could also contain more files. This could be any small static data file that the module could
require. Further, we could decide to factorize out the rules for a tool that requires many small rules (such as the tool
cnvkit in somatic_targeted_seq_cnv_calling).

The code for generating input and output file lists etc. is in the __init__.py file and the module is available as
snappy_pipeline.workflow.somatic_variant_calling. The Snakefile is used for creating the Snakemake
workflow. When executing cubi-snake for a somatic_variant_calling step instance, you will note that the Snake-
make command line displayed at the top will use the --snakefile argument and put the value to the Snakefile inside
the somatic_variant_calling directory at the argument’s value. Thus, cubi-snake is no real “magic” but simply
a shortcut to the snakemake executable.

123

SNAPPY Pipeline Documentation, Release master

40.2 The Snakefile

We will first consider the Snakefile.

40.2.1 Necessary Imports

At the top, it starts with a line specifying UTF-8 coding and a Python docstring giving a short synopsis. It does
some Python imports for making the expand_ref() function and the SomaticVariantCallingWorkflow class
available.

-*- coding: utf-8 -*-
"""CUBI Pipeline somatic_variant_calling step Snakefile"""

import os

from snappy_pipeline import expand_ref
from snappy_pipeline.workflows.somatic_variant_calling import␣
→˓SomaticVariantCallingWorkflow

__author__ = "Manuel Holtgrewe <manuel.holtgrewe@bihealth.de>"

40.2.2 Configuration

Then follows the loading of the configuration. The Snakemake configfile: statement loads the file config.yaml
from the current working directory. When executing the pipeline step with cubi-snake, this is either the directory the
command is called in or the value of the --directory argument if given.

In the last line of this chunk, the JSON pointers in the configuration are expanded, i.e., the "$ref" values are
interpreted. This is used for implementing “overriding behaviour”, i.e., including and extending (OOP-like) the
project’s main configuration file with the per–step instance one. This way, you can set the pipeline_step/name
to somatic_variant_calling in the somatic variant calling pipeline instance directory and to ngs_mapping in the
ngs mapping pipeline step instance directory, for example.

configfile: "config.yaml"

Expand "$ref" JSON pointers in configuration (also works for YAML)
config, lookup_paths, config_paths = expand_ref("config.yaml", config)

40.2.3 Local Rules / Rule all

In the next chunk, the rules that are to be executed locally and not generate any cluster jobs are defined. Then, the
all rule is defined to obtain the list of files to generate by default using the get_result_files() method of the
SomaticVariantCallingWorkflow() class.

localrules:
(continues on next page)

124 Chapter 40. Somatic Variant Calling Dissection

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

Linking files from work/ to output/ should be done locally
somatic_variant_calling_link_out_run,

rule all:

40.2.4 House-Keeping Rules

Next follow the “house-keeping” rules that do not perform any real work. In this case, the
somatic_variant_calling_link_out_run rule performs the linking from the work/ directory into the output/
directory.

Note that the rule names are generated by concatenating the step name (here somatic_variant_calling), the part
of the pipeline step (here link_out), followed by the action to be performed (here run as there is no other action for
link_out).

wf.get_result_files(),

House-Keeping ~~~

Generic linking out ---

rule somatic_variant_calling_link_out_run:

40.2.5 Rule for MuTect

Next comes the rule for running mutect. Note that both for input: and output:, dict values will be passed. These
should be unpacked (similar to Python **kwargs unpacking).

As we are using an input function (i.e., a function object that accepts a wildcards argument), we have to use the recently
introduced Snakemake unpack directive. This allows for lazy unpacking after the input function has been called with
the wildcards argument. For the output files, no wildcards are required as only strings with placeholders are returned.
Thus, the dict with key/value pairs of the named output files is to be unpacked directly using two asterisks (**).

wf.get_input_files("link_out", "run"),
output:

wf.get_output_files("link_out", "run"),
run:

shell(wf.get_shell_cmd("link_out", "run", wildcards))

Somatic Variant Calling ~~~

Run MuTect --

40.2. The Snakefile 125

SNAPPY Pipeline Documentation, Release master

40.2.6 Rule for Scalpel

The rule for Scalpel looks similar. However, here the name of the normal library is required (as it is not part of the
wildcards in contrast to the somatic library).

The way this is implemented here is to introduce a parameter called normal_library_name. The attribute
get_normal_lib_name of the scalpel BaseStepPart sub class object is passed in here (which is actually a func-
tion). On execution of the rule, the function will be called with the wildcards object as the parameter. It will then
lookup the name of the normal library for the matched tumor NGS library and return it. This value is then available as
params.normal_library_name.

Also note that for scalpel, the call is not generated directly by the BaseStepPart sub class, but a Snakemake
wrapper is used instead. This wrapper is located in the directory ../wrappers/scalpel/run, relative to the
somatic_variant_calling Snakefile. The method wrapper_path() builds the correct path relative to the
wrappers directory in the snappy_pipeline directory and its return value is passed to the wrapper: section.

rule somatic_variant_calling_mutect_run:
input:

unpack(wf.get_input_files("mutect", "run")),
output:

**wf.get_output_files("mutect", "run"),
threads: wf.get_resource("mutect", "run", "threads")
resources:

time=wf.get_resource("mutect", "run", "time"),

40.3 The Module

40.3.1 Module Documentation

The file starts with the module-level documentation. Only the first four lines are shown below. This module-level
documentation is also included into the user documentation, e.g., the one for the somatic variant calling module is
included at Somatic Variant Calling.

-*- coding: utf-8 -*-
"""Implementation of the ``somatic_variant_calling`` step

The ``somatic_variant_calling`` step takes as the input the results of the ``ngs_
→˓mapping`` step

40.3.2 Imports

Then follow the necessary imports for the module. Note that the classes of the steps that are used for the input are also
imported (this will be important below).

from itertools import chain
import os
import sys

from biomedsheets.shortcuts import CancerCaseSheet, CancerCaseSheetOptions, is_not_
→˓background

(continues on next page)

126 Chapter 40. Somatic Variant Calling Dissection

http://snakemake.readthedocs.io/en/latest/snakefiles/modularization.html#wrappers
http://snakemake.readthedocs.io/en/latest/snakefiles/modularization.html#wrappers

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

from snakemake.io import expand

from snappy_pipeline.utils import dictify, listify
from snappy_pipeline.workflows.abstract import (

BaseStep,
BaseStepPart,
LinkOutStepPart,
ResourceUsage,

)

40.3.3 Constants

The imports are followed by constant definitions.

In the case of the somatic variant calling methods, the different tools generate a common set of core files, here VCF
files with TBI indices and MD5 files for both. Thus, it makes sense to store the extensions (and names for named input
and output file lists) in module-level constants. Note the use of tuples over lists for marking this datas explicitely as
immutable.

Further, the DEFAULT_CONFIG constant is defined with default configuration in YAML format. This is also displayed
in the user configuration so the users know where configuration settings are available. Required configuration without
any defaults should be set to null (or []/{} for empty lists/dicts) and marked with a # REQUIRED comment. The
different values are to be documented with YAML comments.

This default configuration will be loaded when initializing the BaseStep sub class object and then overridden with the
project- and pipeline step instance–wide configuration.

__author__ = "Manuel Holtgrewe <manuel.holtgrewe@bih-charite.de>"

#: Extensions of files to create as main payload
EXT_VALUES = (".vcf.gz", ".vcf.gz.tbi", ".vcf.gz.md5", ".vcf.gz.tbi.md5")

#: Names of the files to create for the extension
EXT_NAMES = ("vcf", "vcf_tbi", "vcf_md5", "vcf_tbi_md5")

EXT_MATCHED = {
"mutect": {

"vcf": ".vcf.gz",
"vcf_md5": ".vcf.gz.md5",
"vcf_tbi": ".vcf.gz.tbi",
"vcf_tbi_md5": ".vcf.gz.tbi.md5",
"full_vcf": ".full.vcf.gz",
"full_vcf_md5": ".full.vcf.gz.md5",
"full_vcf_tbi": ".full.vcf.gz.tbi",
"full_vcf_tbi_md5": ".full.vcf.gz.tbi.md5",
"txt": ".txt",
"txt_md5": ".txt.md5",
"wig": ".wig",
"wig_md5": ".wig.md5",

},
"scalpel": {

(continues on next page)

40.3. The Module 127

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

"vcf": ".vcf.gz",
"vcf_md5": ".vcf.gz.md5",
"vcf_tbi": ".vcf.gz.tbi",

40.3.4 The BaseStep Sub Class

Let’s jump towards the end of the file. Here is the BaseStep sub class SomaticVariantCallingWorkflow.

Each sub class has to configure the name and sheet_shortcut_class class members. They will be used for iden-
tifying the step name and the BioMed Sheet sheet shortcut class. The somatic variant calling step sets these to
"somatic_variant_calling" and the CancerCaseSheet class.

The static method default_config_yaml()must be overridden in each BaseStep sub class. Each of these functions
will have the same content but it is important for the scope of accessing DEFAULT_CONFIG in the current module.

allow_seq_dict_incompatibility: false
annotations:
- BaseQualityRankSumTest
- FisherStrand
- GCContent
- HaplotypeScore
- HomopolymerRun
- MappingQualityRankSumTest
- MappingQualityZero
- QualByDepth
- ReadPosRankSumTest
- RMSMappingQuality

The constructor of the class calls the super class’ constructor with the arguments from the Snakefile. It is very
important to note that it also gets an iterable (here a one-element tuple) of the BaseStep sub classes that provide input
for this step (here only NGSMappingWorkflow imported at the top). This information is required for making the default
configuration of these steps available.

The constructor then proceeds to register the sub step classes that are used to implement the actual behaviour of the
pipeline step. Here, it is for running MuTect, Scalpel, and linking out the somatic variant call VCF files from work/
into output/.

- Coverage
- ClippingRankSumTest
- DepthPerSampleHC

gatk_ug_joint:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure

The method get_result_files() returns a list of result files of this pipeline step. For this, it uses the
_yield_result_files_() helper method and generates path in the output/ folder. Snakemake knows that the link
out rule will create these files but need corresponding files in work/ for this. Through this mechanism, the individual
tools’ rules will be triggered.

128 Chapter 40. Somatic Variant Calling Dissection

SNAPPY Pipeline Documentation, Release master

Note the use of cubi.utils.listify() decorator that converts a generator (as created by using yield in the func-
tion) to a function returning a list with the yielded objects in the ordere that they are yielded.

debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging
GATK UG--specific configuration
downsample_to_coverage: 250
allow_seq_dict_incompatibility: false
annotations:
- BaseQualityRankSumTest
- FisherStrand
- GCContent
- HaplotypeScore
- HomopolymerRun
- MappingQualityRankSumTest
- MappingQualityZero
- QualByDepth
- ReadPosRankSumTest
- RMSMappingQuality
- DepthPerAlleleBySample
- Coverage
- ClippingRankSumTest
- DepthPerSampleHC

Finally, the check_config() implementation ensures that the path to the NGS mapping step is configured for the
somatic variant calling step.

window_length: 5000000 # split input into windows of this size, each triggers a␣
→˓job

num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation

40.3.5 Module-Level BaseStepPart Sub Class

Now, we move up towards the top of the file again.

The SomaticVariantCallingStepPart class is the base class for the somatic variant calling implementa-
tions. The constructor builds a template string for generating result/output paths. It then builds the member
cancer_ngs_library_to_sample_pair with a mapping from tumor DNA NGS library name to the BioMed Sheets
CancerSamplePair object that contains information about both the tumor and normal sample. Note the use of
OrderedDict to keep the order from the sample sheet definition.

"full_vcf_tbi": ".full.vcf.gz.tbi",
"full_vcf_tbi_md5": ".full.vcf.gz.tbi.md5",
"tar": ".tar.gz",
"tar_md5": ".tar.gz.md5",

},
(continues on next page)

40.3. The Module 129

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

"mutect2": {
"vcf": ".vcf.gz",
"vcf_md5": ".vcf.gz.md5",
"vcf_tbi": ".vcf.gz.tbi",
"vcf_tbi_md5": ".vcf.gz.tbi.md5",
"full_vcf": ".full.vcf.gz",
"full_vcf_md5": ".full.vcf.gz.md5",
"full_vcf_tbi": ".full.vcf.gz.tbi",
"full_vcf_tbi_md5": ".full.vcf.gz.tbi.md5",

},
}

The implementation of get_input_files() returns an input function that given the wildcards returns a dict with
paths to the normal and tumor libraries’ aligned BAM file from the sub workflow ngs_mapping. Note that the input
function returns the actual path without any wildcards.

SOMATIC_VARIANT_CALLERS_MATCHED = ("mutect", "mutect2", "scalpel")

#: Available somatic variant callers that just call all samples from one donor together.
SOMATIC_VARIANT_CALLERS_JOINT = (

"bcftools_joint",
"platypus_joint",
"gatk_hc_joint",
"gatk_ug_joint",
"varscan_joint",

)

#: Available somatic variant callers
SOMATIC_VARIANT_CALLERS = tuple(

chain(SOMATIC_VARIANT_CALLERS_MATCHED, SOMATIC_VARIANT_CALLERS_JOINT)
)

#: Available somatic variant callers assuming matched samples.
SOMATIC_VARIANT_CALLERS_MATCHED = ("mutect", "mutect2", "scalpel", "strelka2")

#: Available somatic variant callers that just call all samples from one donor together.

The method get_normal_lib_name() returns the name of the matched normal NGS library for the given tumor NGS
library name.

"bcftools_joint",
"platypus_joint",
"gatk_hc_joint",
"gatk_ug_joint",

The implementation of get_output_files() returns a dict with named output files for Snakemake. Note that this
function returns named output files with wildcard placeholders.

)

#: Default configuration for the somatic_variant_calling schema
DEFAULT_CONFIG = r"""

(continues on next page)

130 Chapter 40. Somatic Variant Calling Dissection

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

Default configuration somatic_variant_calling
step_config:
somatic_variant_calling:

Finally, the method get_log_file() returns the path to the log file to create by Snakemake. This is available as
{log} in shell commands and as {snakemake.log} in Snakemake wrappers.

path_ngs_mapping: ../ngs_mapping # REQUIRED
ignore_chroms: # patterns of chromosome names to ignore
- NC_007605 # herpes virus

40.3.6 MuTect BaseStepPart Sub Class

First, the class defines the class attribute name and sets it to 'mutect'. This is used by the super class and also by
BaseStep in the places where the name of the implementation is needed.

The check_config() implementation ensures that the necessary MuTect-specific configuration has been set.

- '*_decoy' # decoy contig
- 'HLA-*' # HLA genes
- 'GL000220.*' # Contig with problematic, repetitive DNA in GRCh37
Configuration for joint calling with samtools+bcftools.
bcftools_joint:
max_depth: 4000
max_indel_depth: 4000
window_length: 10000000
num_threads: 16

Configuration for joint calling with Platypus.
platypus_joint:
split_complex_mnvs: true # whether or not to split complex and MNV variants
num_threads: 16

VCF annotation databases are given as mapping from name to
{'file': '/path.vcf.gz',
'info_tag': 'VCF_TAG',
'description': 'VCF header description'}

The function get_shell_cmd() generates the shell command to the CUBI wrapper (not Snakemake wrapper ;) to the
MuTect tool. Here, the parallel CUBI wrapper for MuTect is used with appropriate configuration. Note the direct use
of configuration and that no complex string operations are required for building the call to MuTect.

mutect:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 3500000 # split input into windows of this size, each triggers␣

→˓a job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 2 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks
debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}

(continues on next page)

40.3. The Module 131

SNAPPY Pipeline Documentation, Release master

(continued from previous page)

job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

Configuration for MuTect 2
mutect2:
panel_of_normals: '' # Set path to panel of normals vcf if required
germline_resource: '' # Germline variants resource (same as panel of normals)
common_variants: '' # Common germline variants for contamination estimation
extra_arguments: [] # List additional Mutect2 arguments

Each additional argument xust be in the form:
"--<argument name> <argument value>"
For example, to filter reads prior to calling & to
add annotations to the output vcf:
- "--read-filter CigarContainsNoNOperator"

Finally, the method update_cluster_config() takes the Snakemake cluster configuration and updates it appro-
priately. The three settings cluster.h_vmem, cluster.h_rt, and cluster.pe are used in the generated Snakemake
command line generated by the cubi-snake tool appropriately for SGE.

Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure

40.3.7 Scalpel BaseStepPart Sub Class

The integration for Scalpel is even simpler as Snakemake wrappers can be used and there is no need for the
get_shell_cmd() function. The class sets the class attribute name to 'scalpel'. Then, the check_config()
implementation ensure the presence of the required configuration.

debug_trunc_tokens: 0 # truncation to first N tokens (0 for none)
keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging

Configuration for Scalpel
scalpel:
path_target_regions: REQUIRED # REQUIRED

Configuration for strelka2
strelka2:

Output file generation is similarly easy as for the MuTect part. However, the Scalpel working directory is tar-gzed in
case the users wants to have access to the intermediate results and query the built MuTect database for variants with
different coverages.

132 Chapter 40. Somatic Variant Calling Dissection

SNAPPY Pipeline Documentation, Release master

gatk_hc_joint:
Parallelization configuration
num_cores: 2 # number of cores to use locally
window_length: 50000000 # split input into windows of this size, each triggers a␣

→˓job
num_jobs: 500 # number of windows to process in parallel
use_profile: true # use Snakemake profile for parallel processing
restart_times: 5 # number of times to re-launch jobs in case of failure
max_jobs_per_second: 10 # throttling of job creation
max_status_checks_per_second: 10 # throttling of status checks

The update_cluster_config() method’s implementation is also very simple.

keep_tmpdir: never # keep temporary directory, {always, never, onerror}
job_mult_memory: 1 # memory multiplier
job_mult_time: 1 # running time multiplier
merge_mult_memory: 1 # memory multiplier for merging
merge_mult_time: 1 # running time multiplier for merging
GATK HC--specific configuration

40.3. The Module 133

SNAPPY Pipeline Documentation, Release master

134 Chapter 40. Somatic Variant Calling Dissection

CHAPTER

FORTYONE

NGS MAPPING DISSECTION

This chapter gives a dissection of the NGS Mapping step (ngs_mapping) for CUBI pipeline developers. The NGS
mapping step is an example for a pipeline step that works on the raw FASTQ NGS read files. This chapter assumes that
you have read Somatic Variant Calling Dissection before.

The minority of pipeline steps will work directly with the raw read data. Most steps work on the results of the NGS
read mapping step or even further downstream.

Note: Before reading this chapter, you should

• have knowledge from the user’s perspective of CUBI pipeline (start a Usage)

• have read chapter Developer’s Introduction

• have read chapter Somatic Variant Calling Dissection.

After reading this chapter, you should

• know how to work with raw FASTQ file input

• know how to use the using the LinkInStep

This is still TODO, just look at the code for now ;)

135

SNAPPY Pipeline Documentation, Release master

136 Chapter 41. NGS Mapping Dissection

CHAPTER

FORTYTWO

API DOCUMENTATION

42.1 snappy_pipeline.base

Basic utility code for snappy_pipeline

exception snappy_pipeline.base.InvalidConfiguration
Raised on invalid configuration

exception snappy_pipeline.base.MissingConfiguration
Raised on missing configuration

exception snappy_pipeline.base.SkipLibraryWarning
Raised when libraries are skipped.

exception snappy_pipeline.base.UnknownFiltrationSourceException
Raised when user try to request an unknown filtration source.

exception snappy_pipeline.base.UnsupportedActionException
Raised when user try to call action that isn’t supported.

snappy_pipeline.base.expand_ref(config_path, dict_data, lookup_paths=None, dict_class=<class
'collections.OrderedDict'>)

Expand “$ref” in JSON-like data dict_data

Returns triple:

• path to resolved file

• paths containing included config files

• config files included

snappy_pipeline.base.merge_dicts(dict1, dict2, dict_class=<class 'collections.OrderedDict'>)
Merge dictionary dict2 into dict1

snappy_pipeline.base.merge_kwargs(first_kwargs, second_kwargs)
Merge two keyword arguments.

Parameters

• first_kwargs (dict) – First keyword arguments dictionary.

• second_kwargs (dict) – Second keyword arguments dictionary.

Returns Returns merged dictionary with inputted keyword arguments.

snappy_pipeline.base.print_config(config, file=<_io.TextIOWrapper name='<stderr>' mode='w'
encoding='UTF-8'>)

Print human-readable version of configuration to file

137

SNAPPY Pipeline Documentation, Release master

snappy_pipeline.base.print_sample_sheets(step, file=<_io.TextIOWrapper name='<stderr>' mode='w'
encoding='UTF-8'>)

Print loaded sample sheets from BaseStep in human-readable format

snappy_pipeline.base.snakefile_path(step_name)
Return absolute path to Snakefile for the given step name

42.2 snappy_pipeline.find_file

Code for crawling the file system and caching the results

exception snappy_pipeline.find_file.FileNamesTooDifferent
Raised when two file names are too different to be PE reads

class snappy_pipeline.find_file.FileSystemCrawler(cache_path, invalidation_paths, lock_timeout=60)
Crawl the file system

• start crawling the file system from a given directory

• look for files matching a given PatternSet

• that are below a directory with a given name

cache
The actual dict with the cache, loaded from path to cache_path if the cache file exists.

cache_dirty
Flag whether cache has been modified and needs saving

cache_invalidated
Flag whether cache has been invalidated already.

cache_path
Path to cache (will be stored in JSON format)

invalidation_paths
Path to files to use for checking invalidation.

lock_timeout
Timeout for obtaining file system lock on the file system

logger
The logger to use.

run(root_dir, dir_name, pattern_sets, allow_empty_right)
Perform the file system crawling from a root directory given a query pattern set

allow_empty_right – for mixed PE/SE read data sets (must be either SE or PE for one library!)

save_cache(cache_path=None)
Save cache, cache_path overriding self.cache_path

class snappy_pipeline.find_file.FileSystemCrawlerResult(base_folder, files, names=None)
n-tuple of optionally named files

base_folder
Folder to start crawling in

files
Patterns to search for

138 Chapter 42. API Documentation

SNAPPY Pipeline Documentation, Release master

named_files
Dict with name-to-pattern mapping, None if names is not given

names
Names for the file patterns, optional; if given has to have the same length as files

to_dict()
Convert to dict, can only work if self.names and self.files is given

class snappy_pipeline.find_file.PatternSet(patterns, names=None)
Store named or unnamed list of patterns

named_patterns
Named patterns, if any, else None

names
Optional names

patterns
Patterns to search for with names

42.3 snappy_pipeline.utils

Utility code

class snappy_pipeline.utils.DictQuery
Helper class for comfortable access to nested dicts with str keys.

Source:

• https://www.haykranen.nl/2016/02/13/handling-complex-nested-dicts-in-python/

get(path, default=None)
Return the value for key if key is in the dictionary, else default.

snappy_pipeline.utils.dictify(gen)
Decorator that converts a generator into a function which returns a dict

Use it in the case where a generator is easier to write but you want to enforce returning a dict:

@listify
def counter(max_no):

i = 0
while i <= max_no:

yield 'key{}'.format(i), i

snappy_pipeline.utils.flatten(coll: List[Union[str, List[str]]])→ List[str]
Flatten collection of strings or list of strings.

Source: https://stackoverflow.com/a/17865033

snappy_pipeline.utils.is_none(value)
Helper function returning whether value is None

snappy_pipeline.utils.is_not_none(value)
Helper function returning whether value is not None

snappy_pipeline.utils.listify(gen)
Decorator that converts a generator into a function which returns a list

Use it in the case where a generator is easier to write but you want to enforce returning a list:

42.3. snappy_pipeline.utils 139

https://www.haykranen.nl/2016/02/13/handling-complex-nested-dicts-in-python/
https://stackoverflow.com/a/17865033

SNAPPY Pipeline Documentation, Release master

@listify
def counter(max_no):

i = 0
while i <= max_no:

yield i

snappy_pipeline.utils.try_or_none(func, exceptions)
Helper that tries to execute the function

If one of the exceptions is raised then return None

42.4 snappy_pipeline.workflows.abstract

Base classes for the actual pipeline steps

class snappy_pipeline.workflows.abstract.BaseStep(workflow, config, config_lookup_paths,
config_paths, work_dir, previous_steps=None)

Base class for the pipeline steps

Each pipeline step is a Snakemake workflow

check_config()
Check self.w_config, raise ConfigurationMissing on problems

Override in sub classes.

Raises:MissingConfiguration on missing configuration

config_lookup_paths
Paths with configuration paths, important for later retrieving sample sheet files

config_paths
Tuple with absolute paths to configuration files read

classmethod default_config_yaml()
Override this function for providing default configuration

The configuration should be a YAML fragment. Your configuration should define a top-level key starting
with ‘_’ and then consist of the name of the schema, e.g., ‘_ngs_mapping_schema’. Your default configu-
ration is then merged into the main configuration where the main configuration takes precedence.

Example:

def default_config_yaml(self):
return textwrap.dedent("""

schema_config:
ngs_mapping:
max_threads: 16

""").lstrip()))

Return None for no default configuration.

You can also return an iterable of configurations, these will be merged in the order given (earlier ones will
be overwritten by later ones). This is useful if your schema needs configuration for a later one.

ensure_w_config(config_keys, msg, e_class=<class 'snappy_pipeline.base.MissingConfiguration'>)
Check parameters in configuration.

140 Chapter 42. API Documentation

SNAPPY Pipeline Documentation, Release master

Method ensures required configuration setting are present in the provided configuration; if not, it raises
exception.

Parameters config_keys – List of strings with all keys that must be present in the configuration

for a given step of the analysis to be performed. :type config_keys: tuple

Parameters

• msg (str) – Message to be used in case of exception.

• e_class – Preferred exception class to be raised in case of error.

Default: MissingConfiguration. :type e_class: class

get_args(sub_step, action)
Return arguments for action of substep with given wildcards

Delegates to the sub step object’s get_input_files function

get_input_files(sub_step, action)
Return input files for action of substep with given wildcards

Delegates to the sub step object’s get_input_files function

get_log_file(sub_step, action)
Return path to the log file

Delegates to the sub step object’s get_log_file function

get_output_files(sub_step, action)
Return list of strings with output files/patterns

Delegates to the sub step object’s get_output_files function

get_params(sub_step, action)
Return parameters

Delegates to the sub step object’s get_params function

get_resource(sub_step, action, resource_name)
Get resource

Delegates to the sub step object’s get_resource function

get_result_files()
Return actual list of file names to build

get_shell_cmd(sub_step, action, wildcards)
Return shell command for the pipeline sub step

Delegates to the sub step object’s get_shell_cmd function

get_tmpdir()
Return temporary directory.

To be used directly or via get_resource(“step”, “action”, “tmpdir”)

1. Try to evaluate global_config/tmpdir. Interpret $-variables from environment. Provides the current
date as $TODAY.

2. If this fails, try to use environment variable TMPDIR.

3. If this fails, use tempfile.gettempdir(), same as Snakemake default.

name = None
Override with step name

42.4. snappy_pipeline.workflows.abstract 141

SNAPPY Pipeline Documentation, Release master

previous_steps
Classes of previously executed steps, used for merging their default configuration as well.

register_sub_step_classes(classes)
Register an iterable of sub step classes

Initializes objects in self.sub_steps dict

register_sub_workflow(step_name, workdir, sub_workflow_name=None)
Register workflow with given pipeline step_name and in the given workdir.

Optionally, the sub workflow name can be given separate from step_name (the default) value for it.

run(sub_step, action, wildcards)
Run command for the given action of the given sub step with the given wildcards

Delegates to the sub step object’s run function

sheet_shortcut_args = None
Override with arguments to pass into sheet shortcut class constructor

sheet_shortcut_class = None
Override with the sheet shortcut class to use

sheet_shortcut_kwargs = None
Override with keyword arguments to pass into sheet shortcut class constructor

sheets
Shortcut to the BioMed SampleSheet objects

shortcut_sheets
Shortcut sheets

sub_workflows
Functions from sub workflows, can be used to generate output paths into these workflows

substep_dispatch(step, function, *args, **kwargs)
Dispatch call to function of sub step implementation

substep_getattr(step, name)
Return attribute from substep

w_config
Merge default configuration with true configuration

work_dir
Absolute path to directory of where to perform work

workflow
Snakefile “workflow” object

classmethod wrapper_path(path)
Generate path to wrapper

class snappy_pipeline.workflows.abstract.BaseStepPart(parent)
Base class for a part of a pipeline step

actions: Tuple[str] = None
The actions available in the class.

check_config()
Check configuration, raise ConfigurationMissing on problems

Override in sub classes.

142 Chapter 42. API Documentation

SNAPPY Pipeline Documentation, Release master

Raises:MissingConfiguration on missing configuration

default_resource_usage: snappy_wrappers.resource_usage.ResourceUsage =
ResourceUsage(threads=1, time='01:00:00', memory='2G', partition=None, tmpdir=None)

Default resource usage for actions that are not given in resource_usage.

get_args(action)
Return args for the given action of the sub step

static get_default_partition()→ str
Helper that returns the default partition.

get_input_files(action)
Return input files for the given action of the sub step

get_log_file(action)
Return path to log file

The default implementation tries to call self._get_log_files() and in the case of this function return-
ing a dict, augments it with paths to MD5 files.

get_output_files(action)
Return output files for the given action of the sub step and

get_resource(action: str, resource_name: str)
Return the amount of resources to be allocated for the given action.

Parameters

• action – The action to return the resource requirement for.

• resource_name – The name to return the resource for.

get_resource_usage(action: str)→ snappy_wrappers.resource_usage.ResourceUsage
Return the resource usage for the given action.

get_shell_cmd(action, wildcards)
Return shell command for the given action of the sub step and the given wildcards

resource_usage: Dict[str, snappy_wrappers.resource_usage.ResourceUsage] = {}
Configure resource usage here that should not use the default resource usage from
default_resource_usage.

run(action, wildcards)
Run the sub steps action action’s code with the given wildcards

class snappy_pipeline.workflows.abstract.DataSearchInfo(sheet_path: str, base_paths: list,
search_paths: list, search_patterns: list,
mixed_se_pe: bool)

Data search information - simplified version of DataSetInfo.

class snappy_pipeline.workflows.abstract.DataSetInfo(name, sheet_path, base_paths, search_paths,
search_patterns, sheet_type, is_background,
naming_scheme, mixed_se_pe, sodar_uuid,
sodar_title, pedigree_field=None)

Information on a DataSet

base_paths
All base paths of all configuration, to look for sheet_path

is_background
Whether the data set info is to be used only for background

42.4. snappy_pipeline.workflows.abstract 143

SNAPPY Pipeline Documentation, Release master

mixed_se_pe
Whether mixing SE and PE data sets is allowed.

name
Name of the data set

pedigree_field_kwargs
The (optional) custom field used to define pedigree

search_paths
Search paths for the files in the sample sheet

search_patterns
Search patterns

sheet
The BioMed SampleSheet

sheet_path
Path to the sheet file, for loading

sodar_title
The (optional) title of the project in SODAR.

sodar_uuid
The UUID of the corresponding SODAR project.

exception snappy_pipeline.workflows.abstract.ImplementationUnavailableError
Raised when a function that is to be overridden optionally is called

This is provided as an alternative to NotImplementedError as the Python linters warn if a class does not
override functions throwing NotImplementedError.

class snappy_pipeline.workflows.abstract.InputFilesStepPartMixin
Mixin with predefined “get_input_files” function.

ext_names = None
Names of the files to create for the extension

ext_values = None
Extensions of files to create as main payload

include_ped_file = None
Whether to include path to PED file or not

prev_class = None
Class with input VCF file name

class snappy_pipeline.workflows.abstract.LinkInBaiExternalStepPart(parent)
Link in the external BAI files.

actions: Tuple[str] = ('run',)
Class available actions

name = 'link_in_bai_external'
Step name

pattern_set_keys = ('bai', 'bai_md5')
Patterns set keys

class snappy_pipeline.workflows.abstract.LinkInBamExternalStepPart(parent)
Link in the external BAM files.

144 Chapter 42. API Documentation

SNAPPY Pipeline Documentation, Release master

actions: Tuple[str] = ('run',)
Class available actions

name = 'link_in_bam_external'
Step name

pattern_set_keys = ('bam', 'bam_md5')
Patterns set keys

class snappy_pipeline.workflows.abstract.LinkInPathGenerator(work_dir, data_set_infos,
config_paths,
cache_file_name='.snappy_path_cache',
preprocessed_path='')

Helper class for generating paths to link in

cache_file_name
Name of cache file to create

config_paths
Path to configuration files, used for invalidating cache

run(folder_name, pattern_set_keys=('left', 'right', 'left_md5', 'right_md5', 'bam'))
Yield (src_path, path_infix, filename) one-by-one

Cache is saved after the last iteration

work_dir
Working directory

class snappy_pipeline.workflows.abstract.LinkInStep(parent)
Link in the raw files, e.g. FASTQ files

Depending on the configuration, the files are linked out after postprocessing

get_input_files(action)
Return required input files

get_output_files(action)
Return output files for the given action of the sub step and

get_shell_cmd(action, wildcards)
Return call for linking in the files

The files are linked, keeping their relative paths to the item matching the “folderName” intact.

run(action, wildcards)
Run the sub steps action action’s code with the given wildcards

class snappy_pipeline.workflows.abstract.LinkInVcfExternalStepPart(parent)
Link in the external VCF files.

actions: Tuple[str] = ('run',)
Class available actions

get_shell_cmd(action, wildcards)
Return call for linking in the files

The files are linked, keeping their relative paths to the item matching the “folderName” intact.

name = 'link_in_vcf_external'
Step name

pattern_set_keys = ('vcf', 'vcf_md5')
Patterns set keys

42.4. snappy_pipeline.workflows.abstract 145

SNAPPY Pipeline Documentation, Release master

class snappy_pipeline.workflows.abstract.LinkOutStepPart(parent, disable_patterns=None)
Generically link out

This is for output files that are created unconditionally, i.e., for output files where the output name is the same as
for the work file.

disable_patterns
Patterns for disabling linking out to. This is useful/required when there is a specialized link out step part,
e.g., for the case of alignment where realignment is performed or not, depending on the configuration.

get_input_files(action)
Return input file pattern

get_output_files(action)
Return output file pattern

get_shell_cmd(action, wildcards)
Return call for linking out

snappy_pipeline.workflows.abstract.STDERR_TO_LOG_FILE = '#
---\n# Redirect
stderr to log file and enable printing executed commands\nexec 2> >(tee -a "{log}")\nset
-x\n# ---\n\n'

String constant with bash command for redirecting stderr to {log} file

class snappy_pipeline.workflows.abstract.WritePedigreeSampleNameStepPart(*args, **kwargs)
Class contains method to write pedigree file for primary DNA sample given the index NGS library name.It will
create pedigree information based sole on sample name, example ‘P001’ instead of ‘P001-N1-DNA1-WGS1’.

name = 'write_pedigree_with_sample_name'
Step name

run(wildcards, output)
Write out the pedigree information

Parameters

• wildcards (snakemake.io.Wildcards) – Snakemake wildcards associated with rule
(unused).

• output (snakemake.io.Namedlist) – Snakemake output associated with rule.

class snappy_pipeline.workflows.abstract.WritePedigreeStepPart(parent,
require_dna_ngs_library=False,
only_trios=False)

Write out pedigree file for primary DNA sample given the index NGS library name

actions: Tuple[str] = ('run',)
Class available actions

get_input_files(action)
Returns function returning input files.

Returns a dict with entry "bam" mapping to list of input BAM files. This list will be empty if the parent
step does not define an "ngs_mapping" workflow.

get_output_files(action)
Return output files for the given action of the sub step and

name = 'write_pedigree'
Step name

146 Chapter 42. API Documentation

SNAPPY Pipeline Documentation, Release master

require_dna_ngs_library
Whether to prevent writing out of samples with out NGS library.

run(wildcards, output)
Write out the pedigree information

Parameters

• wildcards (snakemake.io.Wildcards) – Snakemake wildcards associated with rule
(unused).

• output (snakemake.io.Namedlist) – Snakemake output associated with rule.

snappy_pipeline.workflows.abstract.get_ngs_library_folder_name(sheets, library_name)
Return library’s folder name

The library is searched for based on the library_name. In the case of multiple NGS library matches, the first
one is returned.

snappy_pipeline.workflows.abstract.modified_environ(*remove, **update)
Temporarily updates the os.environ dictionary in-place.

The os.environ dictionary is updated in-place so that the modification is sure to work in all situations.

Parameters

• remove – Environment variables to remove.

• update – Dictionary of environment variables and values to add/update.

Source: https://stackoverflow.com/a/34333710/84349

42.4. snappy_pipeline.workflows.abstract 147

https://stackoverflow.com/a/34333710/84349

SNAPPY Pipeline Documentation, Release master

148 Chapter 42. API Documentation

CHAPTER

FORTYTHREE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

43.1 Types of Contributions

43.1.1 Report Bugs

Report bugs at https://github.com/bihealth/snappy-pipeline/issues

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

43.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

43.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

43.1.4 Write Documentation

CUBI Pipeline could always use more documentation, whether as part of the official CUBI Pipeline docs, in docstrings,
or even on the web in blog posts, articles, and such.

149

https://github.com/bihealth/snappy-pipeline/issues

SNAPPY Pipeline Documentation, Release master

43.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bihealth/snappy-pipeline/issues

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

43.2 Get Started!

Ready to contribute? Here’s how to set up snappy-pipeline for local development.

1. Fork the snappy_pipeline repo on BIH GitHub.

2. Clone your fork locally:

$ git clone git@github.com:bihealth/snappy-pipeline.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv snappy-pipeline
$ cd snappy-pipeline/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 snappy-pipeline tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

150 Chapter 43. Contributing

https://github.com/bihealth/snappy-pipeline/issues

SNAPPY Pipeline Documentation, Release master

43.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.7, 3.8 and 3.9, and for PyPy. Check https://travis-ci.org/holtgrewe/
cubi_piepline/pull_requests and make sure that the tests pass for all supported Python versions.

43.4 Tips

To run a subset of tests:

$ py.test tests.test_snappy_pipeline

43.3. Pull Request Guidelines 151

https://travis-ci.org/holtgrewe/cubi_piepline/pull_requests
https://travis-ci.org/holtgrewe/cubi_piepline/pull_requests

SNAPPY Pipeline Documentation, Release master

152 Chapter 43. Contributing

CHAPTER

FORTYFOUR

HOW TO: RELEASE

1. Update the version in the following files:

• installation.rst (look for snappy_pipeline.git@VERSION)

• TODO more?

2. Create a tag and push it

$ git tag v0.1.0
$ git push --tags origin

That’s it, so far we don’t create packages or deploy the documentation.

153

SNAPPY Pipeline Documentation, Release master

154 Chapter 44. How To: Release

CHAPTER

FORTYFIVE

CREDITS

45.1 Active Contributors

• Eric Blanc <eric.blanc@bihealth.de>

• Manuel Holtgrewe <manuel.holtgrewe@bihealth.de>

• Clemens Messerschmidt <clemens.messerschmidt@bihealth.de>

• Nina Thiessen <nina.thiessen@bihealth.de>

• Oliver Stolpe <oliver.stolpe@bihealth.de>

45.2 Former Contributors

• Oliver Drechsel <oliver.drechsel@bihealth.de>

155

mailto:eric.blanc@bihealth.de
mailto:manuel.holtgrewe@bihealth.de
mailto:clemens.messerschmidt@bihealth.de
mailto:nina.thiessen@bihealth.de
mailto:oliver.stolpe@bihealth.de
mailto:oliver.drechsel@bihealth.de

SNAPPY Pipeline Documentation, Release master

156 Chapter 45. Credits

CHAPTER

FORTYSIX

CHANGELOG

157

SNAPPY Pipeline Documentation, Release master

158 Chapter 46. Changelog

CHAPTER

FORTYSEVEN

LICENSE

MIT License

Copyright (c) 2015-2021, CUBI, Berlin Institute of Health

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

159

SNAPPY Pipeline Documentation, Release master

160 Chapter 47. License

PYTHON MODULE INDEX

s
snappy_pipeline.base, 137
snappy_pipeline.find_file, 138
snappy_pipeline.utils, 139
snappy_pipeline.workflows.abstract, 140
snappy_pipeline.workflows.adapter_trimming,

23
snappy_pipeline.workflows.helper_gcnv_model_targeted,

33
snappy_pipeline.workflows.helper_gcnv_model_wgs,

35
snappy_pipeline.workflows.hla_typing, 37
snappy_pipeline.workflows.igv_session_generation,

39
snappy_pipeline.workflows.ngs_data_qc, 41
snappy_pipeline.workflows.ngs_mapping, 43
snappy_pipeline.workflows.ngs_sanity_checking,

51
snappy_pipeline.workflows.repeat_expansion,

89
snappy_pipeline.workflows.somatic_gene_fusion_calling,

53
snappy_pipeline.workflows.somatic_neoepitope_prediction,

55
snappy_pipeline.workflows.somatic_ngs_sanity_checking,

57
snappy_pipeline.workflows.somatic_purity_ploidy_estimate,

59
snappy_pipeline.workflows.somatic_targeted_seq_cnv_calling,

61
snappy_pipeline.workflows.somatic_variant_annotation,

65
snappy_pipeline.workflows.somatic_variant_calling,

69
snappy_pipeline.workflows.somatic_variant_checking,

75
snappy_pipeline.workflows.somatic_variant_expression,

77
snappy_pipeline.workflows.somatic_variant_filtration,

79
snappy_pipeline.workflows.somatic_wgs_cnv_calling,

81

snappy_pipeline.workflows.somatic_wgs_sv_calling,
83

snappy_pipeline.workflows.sv_calling_targeted,
85

snappy_pipeline.workflows.sv_calling_wgs, 115
snappy_pipeline.workflows.targeted_seq_mei_calling,

87
snappy_pipeline.workflows.tcell_crg_report,

91
snappy_pipeline.workflows.variant_annotation,

93
snappy_pipeline.workflows.variant_calling, 95
snappy_pipeline.workflows.variant_checking,

101
snappy_pipeline.workflows.variant_denovo_filtration,

103
snappy_pipeline.workflows.variant_filtration,

111
snappy_pipeline.workflows.variant_phasing,

107

161

SNAPPY Pipeline Documentation, Release master

162 Python Module Index

INDEX

A
actions (snappy_pipeline.workflows.abstract.BaseStepPart

attribute), 142
actions (snappy_pipeline.workflows.abstract.LinkInBaiExternalStepPart

attribute), 144
actions (snappy_pipeline.workflows.abstract.LinkInBamExternalStepPart

attribute), 144
actions (snappy_pipeline.workflows.abstract.LinkInVcfExternalStepPart

attribute), 145
actions (snappy_pipeline.workflows.abstract.WritePedigreeStepPart

attribute), 146

B
base_folder (snappy_pipeline.find_file.FileSystemCrawlerResult

attribute), 138
base_paths (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 143
BaseStep (class in snappy_pipeline.workflows.abstract),

140
BaseStepPart (class in

snappy_pipeline.workflows.abstract), 142

C
cache (snappy_pipeline.find_file.FileSystemCrawler at-

tribute), 138
cache_dirty (snappy_pipeline.find_file.FileSystemCrawler

attribute), 138
cache_file_name (snappy_pipeline.workflows.abstract.LinkInPathGenerator

attribute), 145
cache_invalidated (snappy_pipeline.find_file.FileSystemCrawler

attribute), 138
cache_path (snappy_pipeline.find_file.FileSystemCrawler

attribute), 138
check_config() (snappy_pipeline.workflows.abstract.BaseStep

method), 140
check_config() (snappy_pipeline.workflows.abstract.BaseStepPart

method), 142
config_lookup_paths

(snappy_pipeline.workflows.abstract.BaseStep
attribute), 140

config_paths (snappy_pipeline.workflows.abstract.BaseStep
attribute), 140

config_paths (snappy_pipeline.workflows.abstract.LinkInPathGenerator
attribute), 145

D
DataSearchInfo (class in

snappy_pipeline.workflows.abstract), 143
DataSetInfo (class in

snappy_pipeline.workflows.abstract), 143
default_config_yaml()

(snappy_pipeline.workflows.abstract.BaseStep
class method), 140

default_resource_usage
(snappy_pipeline.workflows.abstract.BaseStepPart
attribute), 143

dictify() (in module snappy_pipeline.utils), 139
DictQuery (class in snappy_pipeline.utils), 139
disable_patterns (snappy_pipeline.workflows.abstract.LinkOutStepPart

attribute), 146

E
ensure_w_config() (snappy_pipeline.workflows.abstract.BaseStep

method), 140
expand_ref() (in module snappy_pipeline.base), 137
ext_names (snappy_pipeline.workflows.abstract.InputFilesStepPartMixin

attribute), 144
ext_values (snappy_pipeline.workflows.abstract.InputFilesStepPartMixin

attribute), 144

F
FileNamesTooDifferent, 138
files (snappy_pipeline.find_file.FileSystemCrawlerResult

attribute), 138
FileSystemCrawler (class in

snappy_pipeline.find_file), 138
FileSystemCrawlerResult (class in

snappy_pipeline.find_file), 138
flatten() (in module snappy_pipeline.utils), 139

G
get() (snappy_pipeline.utils.DictQuery method), 139
get_args() (snappy_pipeline.workflows.abstract.BaseStep

method), 141

163

SNAPPY Pipeline Documentation, Release master

get_args() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_default_partition()
(snappy_pipeline.workflows.abstract.BaseStepPart
static method), 143

get_input_files() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_input_files() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_input_files() (snappy_pipeline.workflows.abstract.LinkInStep
method), 145

get_input_files() (snappy_pipeline.workflows.abstract.LinkOutStepPart
method), 146

get_input_files() (snappy_pipeline.workflows.abstract.WritePedigreeStepPart
method), 146

get_log_file() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_log_file() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_ngs_library_folder_name() (in module
snappy_pipeline.workflows.abstract), 147

get_output_files() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_output_files() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_output_files() (snappy_pipeline.workflows.abstract.LinkInStep
method), 145

get_output_files() (snappy_pipeline.workflows.abstract.LinkOutStepPart
method), 146

get_output_files() (snappy_pipeline.workflows.abstract.WritePedigreeStepPart
method), 146

get_params() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_resource() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_resource() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_resource_usage()
(snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_result_files() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_shell_cmd() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

get_shell_cmd() (snappy_pipeline.workflows.abstract.BaseStepPart
method), 143

get_shell_cmd() (snappy_pipeline.workflows.abstract.LinkInStep
method), 145

get_shell_cmd() (snappy_pipeline.workflows.abstract.LinkInVcfExternalStepPart
method), 145

get_shell_cmd() (snappy_pipeline.workflows.abstract.LinkOutStepPart
method), 146

get_tmpdir() (snappy_pipeline.workflows.abstract.BaseStep
method), 141

I
ImplementationUnavailableError, 144
include_ped_file (snappy_pipeline.workflows.abstract.InputFilesStepPartMixin

attribute), 144
InputFilesStepPartMixin (class in

snappy_pipeline.workflows.abstract), 144
invalidation_paths (snappy_pipeline.find_file.FileSystemCrawler

attribute), 138
InvalidConfiguration, 137
is_background (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 143
is_none() (in module snappy_pipeline.utils), 139
is_not_none() (in module snappy_pipeline.utils), 139

L
LinkInBaiExternalStepPart (class in

snappy_pipeline.workflows.abstract), 144
LinkInBamExternalStepPart (class in

snappy_pipeline.workflows.abstract), 144
LinkInPathGenerator (class in

snappy_pipeline.workflows.abstract), 145
LinkInStep (class in snappy_pipeline.workflows.abstract),

145
LinkInVcfExternalStepPart (class in

snappy_pipeline.workflows.abstract), 145
LinkOutStepPart (class in

snappy_pipeline.workflows.abstract), 145
listify() (in module snappy_pipeline.utils), 139
lock_timeout (snappy_pipeline.find_file.FileSystemCrawler

attribute), 138
logger (snappy_pipeline.find_file.FileSystemCrawler at-

tribute), 138

M
merge_dicts() (in module snappy_pipeline.base), 137
merge_kwargs() (in module snappy_pipeline.base), 137
MissingConfiguration, 137
mixed_se_pe (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 143
modified_environ() (in module

snappy_pipeline.workflows.abstract), 147
module

snappy_pipeline.base, 137
snappy_pipeline.find_file, 138
snappy_pipeline.utils, 139
snappy_pipeline.workflows.abstract, 140
snappy_pipeline.workflows.adapter_trimming,

23
snappy_pipeline.workflows.helper_gcnv_model_targeted,

33
snappy_pipeline.workflows.helper_gcnv_model_wgs,

35
snappy_pipeline.workflows.hla_typing, 37

164 Index

SNAPPY Pipeline Documentation, Release master

snappy_pipeline.workflows.igv_session_generation,
39

snappy_pipeline.workflows.ngs_data_qc, 41
snappy_pipeline.workflows.ngs_mapping, 43
snappy_pipeline.workflows.ngs_sanity_checking,

51
snappy_pipeline.workflows.repeat_expansion,

89
snappy_pipeline.workflows.somatic_gene_fusion_calling,

53
snappy_pipeline.workflows.somatic_neoepitope_prediction,

55
snappy_pipeline.workflows.somatic_ngs_sanity_checking,

57
snappy_pipeline.workflows.somatic_purity_ploidy_estimate,

59
snappy_pipeline.workflows.somatic_targeted_seq_cnv_calling,

61
snappy_pipeline.workflows.somatic_variant_annotation,

65
snappy_pipeline.workflows.somatic_variant_calling,

69
snappy_pipeline.workflows.somatic_variant_checking,

75
snappy_pipeline.workflows.somatic_variant_expression,

77
snappy_pipeline.workflows.somatic_variant_filtration,

79
snappy_pipeline.workflows.somatic_wgs_cnv_calling,

81
snappy_pipeline.workflows.somatic_wgs_sv_calling,

83
snappy_pipeline.workflows.sv_calling_targeted,

85
snappy_pipeline.workflows.sv_calling_wgs,

115
snappy_pipeline.workflows.targeted_seq_mei_calling,

87
snappy_pipeline.workflows.tcell_crg_report,

91
snappy_pipeline.workflows.variant_annotation,

93
snappy_pipeline.workflows.variant_calling,

95
snappy_pipeline.workflows.variant_checking,

101
snappy_pipeline.workflows.variant_denovo_filtration,

103
snappy_pipeline.workflows.variant_filtration,

111
snappy_pipeline.workflows.variant_phasing,

107

N
name (snappy_pipeline.workflows.abstract.BaseStep at-

tribute), 141
name (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
name (snappy_pipeline.workflows.abstract.LinkInBaiExternalStepPart

attribute), 144
name (snappy_pipeline.workflows.abstract.LinkInBamExternalStepPart

attribute), 145
name (snappy_pipeline.workflows.abstract.LinkInVcfExternalStepPart

attribute), 145
name (snappy_pipeline.workflows.abstract.WritePedigreeSampleNameStepPart

attribute), 146
name (snappy_pipeline.workflows.abstract.WritePedigreeStepPart

attribute), 146
named_files (snappy_pipeline.find_file.FileSystemCrawlerResult

attribute), 138
named_patterns (snappy_pipeline.find_file.PatternSet

attribute), 139
names (snappy_pipeline.find_file.FileSystemCrawlerResult

attribute), 139
names (snappy_pipeline.find_file.PatternSet attribute),

139

P
pattern_set_keys (snappy_pipeline.workflows.abstract.LinkInBaiExternalStepPart

attribute), 144
pattern_set_keys (snappy_pipeline.workflows.abstract.LinkInBamExternalStepPart

attribute), 145
pattern_set_keys (snappy_pipeline.workflows.abstract.LinkInVcfExternalStepPart

attribute), 145
patterns (snappy_pipeline.find_file.PatternSet at-

tribute), 139
PatternSet (class in snappy_pipeline.find_file), 139
pedigree_field_kwargs

(snappy_pipeline.workflows.abstract.DataSetInfo
attribute), 144

prev_class (snappy_pipeline.workflows.abstract.InputFilesStepPartMixin
attribute), 144

previous_steps (snappy_pipeline.workflows.abstract.BaseStep
attribute), 141

print_config() (in module snappy_pipeline.base), 137
print_sample_sheets() (in module

snappy_pipeline.base), 137

R
register_sub_step_classes()

(snappy_pipeline.workflows.abstract.BaseStep
method), 142

register_sub_workflow()
(snappy_pipeline.workflows.abstract.BaseStep
method), 142

require_dna_ngs_library
(snappy_pipeline.workflows.abstract.WritePedigreeStepPart

Index 165

SNAPPY Pipeline Documentation, Release master

attribute), 146
resource_usage (snappy_pipeline.workflows.abstract.BaseStepPart

attribute), 143
run() (snappy_pipeline.find_file.FileSystemCrawler

method), 138
run() (snappy_pipeline.workflows.abstract.BaseStep

method), 142
run() (snappy_pipeline.workflows.abstract.BaseStepPart

method), 143
run() (snappy_pipeline.workflows.abstract.LinkInPathGenerator

method), 145
run() (snappy_pipeline.workflows.abstract.LinkInStep

method), 145
run() (snappy_pipeline.workflows.abstract.WritePedigreeSampleNameStepPart

method), 146
run() (snappy_pipeline.workflows.abstract.WritePedigreeStepPart

method), 147

S
save_cache() (snappy_pipeline.find_file.FileSystemCrawler

method), 138
search_paths (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
search_patterns (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
sheet (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
sheet_path (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
sheet_shortcut_args

(snappy_pipeline.workflows.abstract.BaseStep
attribute), 142

sheet_shortcut_class
(snappy_pipeline.workflows.abstract.BaseStep
attribute), 142

sheet_shortcut_kwargs
(snappy_pipeline.workflows.abstract.BaseStep
attribute), 142

sheets (snappy_pipeline.workflows.abstract.BaseStep
attribute), 142

shortcut_sheets (snappy_pipeline.workflows.abstract.BaseStep
attribute), 142

SkipLibraryWarning, 137
snakefile_path() (in module snappy_pipeline.base),

138
snappy_pipeline.base

module, 137
snappy_pipeline.find_file

module, 138
snappy_pipeline.utils

module, 139
snappy_pipeline.workflows.abstract

module, 140
snappy_pipeline.workflows.adapter_trimming

module, 23
snappy_pipeline.workflows.helper_gcnv_model_targeted

module, 33
snappy_pipeline.workflows.helper_gcnv_model_wgs

module, 35
snappy_pipeline.workflows.hla_typing

module, 37
snappy_pipeline.workflows.igv_session_generation

module, 39
snappy_pipeline.workflows.ngs_data_qc

module, 41
snappy_pipeline.workflows.ngs_mapping

module, 43
snappy_pipeline.workflows.ngs_sanity_checking

module, 51
snappy_pipeline.workflows.repeat_expansion

module, 89
snappy_pipeline.workflows.somatic_gene_fusion_calling

module, 53
snappy_pipeline.workflows.somatic_neoepitope_prediction

module, 55
snappy_pipeline.workflows.somatic_ngs_sanity_checking

module, 57
snappy_pipeline.workflows.somatic_purity_ploidy_estimate

module, 59
snappy_pipeline.workflows.somatic_targeted_seq_cnv_calling

module, 61
snappy_pipeline.workflows.somatic_variant_annotation

module, 65
snappy_pipeline.workflows.somatic_variant_calling

module, 69
snappy_pipeline.workflows.somatic_variant_checking

module, 75
snappy_pipeline.workflows.somatic_variant_expression

module, 77
snappy_pipeline.workflows.somatic_variant_filtration

module, 79
snappy_pipeline.workflows.somatic_wgs_cnv_calling

module, 81
snappy_pipeline.workflows.somatic_wgs_sv_calling

module, 83
snappy_pipeline.workflows.sv_calling_targeted

module, 85
snappy_pipeline.workflows.sv_calling_wgs

module, 115
snappy_pipeline.workflows.targeted_seq_mei_calling

module, 87
snappy_pipeline.workflows.tcell_crg_report

module, 91
snappy_pipeline.workflows.variant_annotation

module, 93
snappy_pipeline.workflows.variant_calling

module, 95
snappy_pipeline.workflows.variant_checking

166 Index

SNAPPY Pipeline Documentation, Release master

module, 101
snappy_pipeline.workflows.variant_denovo_filtration

module, 103
snappy_pipeline.workflows.variant_filtration

module, 111
snappy_pipeline.workflows.variant_phasing

module, 107
sodar_title (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
sodar_uuid (snappy_pipeline.workflows.abstract.DataSetInfo

attribute), 144
STDERR_TO_LOG_FILE (in module

snappy_pipeline.workflows.abstract), 146
sub_workflows (snappy_pipeline.workflows.abstract.BaseStep

attribute), 142
substep_dispatch() (snappy_pipeline.workflows.abstract.BaseStep

method), 142
substep_getattr() (snappy_pipeline.workflows.abstract.BaseStep

method), 142

T
to_dict() (snappy_pipeline.find_file.FileSystemCrawlerResult

method), 139
try_or_none() (in module snappy_pipeline.utils), 140

U
UnknownFiltrationSourceException, 137
UnsupportedActionException, 137

W
w_config (snappy_pipeline.workflows.abstract.BaseStep

attribute), 142
work_dir (snappy_pipeline.workflows.abstract.BaseStep

attribute), 142
work_dir (snappy_pipeline.workflows.abstract.LinkInPathGenerator

attribute), 145
workflow (snappy_pipeline.workflows.abstract.BaseStep

attribute), 142
wrapper_path() (snappy_pipeline.workflows.abstract.BaseStep

class method), 142
WritePedigreeSampleNameStepPart (class in

snappy_pipeline.workflows.abstract), 146
WritePedigreeStepPart (class in

snappy_pipeline.workflows.abstract), 146

Index 167

	Quickstart
	Install (Mini)conda
	Install Snappy Pipeline

	Installation
	Prerequisites
	Installing a Release
	Installing as a Developer
	Running the Tests
	Running the Style Checks
	Developer Documentation

	Usage
	Overview
	Motivation
	Definitions
	An Example Project
	Components of a CUBI Pipeline Project
	Components of a Pipeline Step Instance Excecution
	How FASTQ files are found
	Overview of the Somatic Variant Pipeline
	The Matched Cancer Data Schema
	Project Directory Setup
	Working Directories for Step Instances
	Adding Sample Sheets
	Executing the Project’s Pipeline

	Pipeline Step Introduction
	Generic Pipeline Step Description
	File System Layout
	Directory input/
	Directory work/
	Directory output/

	Step Instance Configuration config.yaml

	Adapter Trimming
	Step Input
	Data Set Configuration
	Overriding data set confguration with path_link_in
	Mixing Single-End and Paired-End Reads

	Step Output
	Default Configuration
	Available Adapter Trimming Tools

	Germline Build Target Sequence gCNV Model
	Step Input
	Step Output
	Global Configuration
	Default Configuration

	Germline Build WGS gCNV Model
	Step Input
	Step Output
	Global Configuration
	Default Configuration

	HLA Typing
	Step Input
	Step Output
	Default Configuration
	Available HLA Typing Tools

	IGV Session Generation
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	NGS Data QC
	Default Configuration

	NGS Mapping
	Properties
	Step Input
	Data Set Configuration
	Mixing Single-End and Paired-End Reads

	Step Output
	Global Configuration
	Default Configuration
	Available Read Mappers
	Notes on STAR mapper configuration
	Reports

	NGS Sanity Checking
	Step Input
	Step Output
	Default Configuration

	Somatic Gene Fusion Calling
	Step Input
	Step Output
	Default Configuration
	Available Gene Fusion Callers

	Somatic Neoepitope Prediction
	Step Input
	Step Output
	Default Configuration

	Somatic NGS Sanity Checking
	Step Input
	Step Output
	Default Configuration

	Somatic Purity & Ploidy Estimate
	Default Configuration

	Somatic Targeted Seq. CNV Calling
	Step Input
	Step Output
	Default Configuration
	Available Somatic Targeted CNV Caller

	Somatic Variant Annotation
	Step Input
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	Somatic Variant Calling
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Somatic Variant Callers
	Reports

	Somatic Variant Checking
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	Somatic Variant Expression
	Step Input
	Step Output
	Default Configuration

	Somatic Variant Filtration
	Default Configuration
	Important
	Concept
	Workflow

	Somatic WGS CNV Calling
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Somatic CNV Callers
	Reports

	Somatic WGS SV Calling
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Somatic CNV Callers
	Reports

	Germline Targeted Seq. CNV Calling
	Germline Targeted Seq. MEI Calling
	Stability
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available MEI Identification Tools
	Reports
	Parallel Execution

	Germline Repeat Expansion Analysis
	Stability
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Repeat Analysis Tools
	Parallel Execution

	T cell CRG Report
	Step Input
	Step Output
	Default Configuration
	Available Gene Fusion Callers

	Germline Variant Annotation
	Stability
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Variant Annotators
	Reports

	Germline Variant Calling
	Properties
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Variant Callers
	Reports
	Log Files
	Implementation Notes
	Example Output

	Germline Variant Sanity Checking
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Available Variant Checkers
	Reports

	Germline Variant De Novo Filtration
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	Germline Variant Phasing
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	Germline Variant Filtration
	Filtration Steps
	Step Input
	Step Output
	Global Configuration
	Default Configuration
	Reports

	Germline SV Calling
	Germline WGS SV Filtration
	Developer’s Introduction
	Prerequisites – Your Tool Belt
	Anatomy of a Typical Pipeline Step
	Anatomy of the cubi-snake Executable

	Somatic Variant Calling Dissection
	Pipeline Step File Structure
	The Snakefile
	Necessary Imports
	Configuration
	Local Rules / Rule all
	House-Keeping Rules
	Rule for MuTect
	Rule for Scalpel

	The Module
	Module Documentation
	Imports
	Constants
	The BaseStep Sub Class
	Module-Level BaseStepPart Sub Class
	MuTect BaseStepPart Sub Class
	Scalpel BaseStepPart Sub Class

	NGS Mapping Dissection
	API Documentation
	snappy_pipeline.base
	snappy_pipeline.find_file
	snappy_pipeline.utils
	snappy_pipeline.workflows.abstract

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips

	How To: Release
	Credits
	Active Contributors
	Former Contributors

	Changelog
	License
	Python Module Index
	Index

